

Copyright © 2020 Valytic Consulting. All rights reserved.

1

On

The Origin of Bugs,
Or

Understanding hardware bugs and how to avoid them

Bryan Dickman, Valytic Consulting Limited

Abstract
Where do bugs come from? What are the common ways
that bugs are introduced into designs and what can design
engineers and verification engineers jointly do to avoid
them?

1 Introduction
Note that I am writing this whitepaper from the
perspective of several decades in the semiconductor
industry, working for a highly successful IP company
(whose roots are firmly in CPU design), and working in
the field of Design Verification, which means I have spent
a lot of my career thinking about and analyzing bugs! This
whitepaper does not set out to publish a new or novel
approach to verification or bug discovery, but instead to
provide an overview of bugs in a hardware design context,
with some insights into what causes bugs and some
strategies that can be used to avoid them. Some of these
strategies are already familiar to software developers and
may be equally applicable to hardware developers. Many
hardware developers are already using some or all of them
anyhow. Finally, as data science becomes increasingly
accessible as a tool to solve many problems in many
fields, including engineering, I take a very high-level view
on how analytics can be applied to the bug analytics
problem.

Note that the data visualizations shown in
this paper are hypothetical drawings and

not graphs of real data.

1.1 Why do we still have bugs (and
jobs as verification engineers)?

How do you design a complex hardware IP such as a
processor that is fully verified? Hardware is getting more
complex and bugs are getting correspondingly more
complex. It is sometimes mind-bending to fully
understand the convoluted conditions that lead to bugs
being activated. The chances of these conditions arising
may seem remote when analyzing the bug using the
verification environment. However, what you have to
consider is that complex IP products such as CPUs, GPUs,
IoT, ML and other System IPs are being deployed into
billions of devices, within many unique environments,
and executing vast masses of OS and application software
at GHz speeds. This means that those bugs observed in
your verification environments, which you believe to be
extreme and rare, might adversely affect entire product
lines of deployed technology with many unforeseen
consequences. The stakes for hardware IP developers
have never been higher.

Building functionally correct products is the shared
responsibility of both the design team and the verification
team. It’s a false assumption that complex designs like
processors can be exhaustively verified, and that the final
design can be free of all bugs.

I assert that:

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

2

All complex designs contain bugs.
Verification can never achieve completeness and designs
must be built in a way that fully accounts for verification
achievability.

My second assertion is that:

Verification is a resource limited ‘quest’
to find as many bugs as possible before

shipping.
It is common practice to separate these two roles out and
identify them as distinct disciplines. Verification
Engineers should employ strategies that increase the
chances to find all bugs. Design Engineers should employ
strategies that minimize the risk of bugs occurring.

These two disciplines require many shared skills and
some unique ones as shown in the following Venn
diagram.

Figure 1 Design and Verification Skills Venn Diagram

1.1.1 Hardware Designer Engineers
Design teams focus on achieving both functional and
physical goals such as power, performance and area
(PPA). These goals define the product as much as the
functionality and make the difference between a
successful product and an unsuccessful one. Designers are
highly skilled in logic design and understand how the
HDL1 translates into actual gates and registers as it passes
through front-end design tools such as synthesis and
timing-analysis. They understand complex architectures
and micro-architectures and how to exploit them to
optimize functional performance. They must understand
system level architectures and how their product works in
a system environment and how software will use it. They
know how to balance functional performance with
physical performance. For example, how to optimize
‘work-output per unit of energy’ for a processor. There are
many front-end EDA tools to master and they need a good
understanding of implementation workflows and how
their RTL code transforms to physical circuits on silicon.
Good designers are constantly aware of the power

1 Hardware Description Language (Verilog, VHDL, SystemVerilog)

consumption of their logic, and design everything with
power-efficiency and low-power in mind.

Design is a discipline of craftsmanship where good design
emerges from bringing together decades of experience,
knowhow and training, skills and talent, ingenuity and
innovation, and attention to detail.

1.1.2 Hardware Verification Engineers
Designers are perfectly capable of performing the
verification of their own designs, but it is accepted good
practice, where resources are available, that the
verification tasks are undertaken by dedicated verification
engineers who have a slightly different skillset and with
the added benefit of an independent interpretation of the
design specification. This independent understanding of
the specification can often expose specification
ambiguities or misinterpretations in the early test planning
phase, before expensive verification testing cycles have
been run.

Verification Engineers (sometimes referred to as Design
Verification Engineers or DV Engineers) need a broad set
of disciplines which may be more biased towards software
development these days, but also with a head for
understanding hardware specifications, architectures and
RTL code. There are many verification tools and
languages that have emerged over recent decades that DV
Engineers must master such as SystemVerilog,
Emulators, FPGAs, Formal Verification etc. They will
also will be constructing much of the stimulus with
software programs written in various languages from
Assembler to C, and they will be masters of scripting and
building bespoke tools and infrastructures to automate
and optimize testing to reach bugs more quickly, extend
the search areas more deeply, and optimize the available
infrastructures upon which verification is executed. They
must also be masters of data analysis, since verification
work generates much data. Sifting and analyzing data to
understand verification progress while the design and
verification environments are constantly changing, is also
a major challenge. Coverage is a key concept for turning
verification into a measurable process.

Verification engineers have a few specific personality
traits. After all they appear get their kicks from
demonstrating that something is broken!

I like to describe this as the ABC verification philosophy.

Assume nothing; Believe no-one; Check
everything!

However, they have the same objectives as the design
team. They want to deliver a bug-free high-quality
product, and they want to share the glory for that as much
as the design team. When serious bugs are missed and

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

3

make it through to the end product, the responsibility is
equally shared. Teams should adopt strong practices of
blame-free Root Cause Analysis (RCA2) to understand if
the escape was due to an omission of verification or a
weakness of design, or a combination of both. They can
then apply appropriate corrective actions to one or both
areas to ensure that the learning is captured and
implemented for the current product, sibling products,
future products and maybe even looking back at legacy
products. It is vital that good practices of knowledge
sharing ensure that bug learnings are shared openly within
the organization through RCA. When bugs affect shipped
products, there must be credible evidence of
organizational learning that will rebuild customer
confidence. This philosophy of continuous marginal
improvements will aggregate to significant and
measurable overall improvements over time.

The nature of the task does foster some healthy
competition between the disciplines to build clean code
and to wring out all of the bugs, no matter how obscure
they might be. Both roles are intellectually demanding
and rewarding.

2 When is a bug a bug?
All complex designs contain bugs, without exception. No
design can ever be bug-free. Verification is an NP-Hard3
problem, i.e. there is no perfect solution. Verification is a
time and resource-limited quest to find as many bugs as
possible, caveated by evidencing no known impactful
bugs (known-knowns4), and also to ensure that coverage
goals and stability targets have been achieved (known-
unknowns), at the point of product delivery. Of course,
this leaves the remaining bugs that will likely be present
in the shipped products (the unknown-unknowns), and we
hope that should they emerge, they are not impactful
and/or can be satisfactorily worked around in the field.

So, what makes a bug into a bug? Let’s talk about
functional bugs for now. I will omit the usual tale of the
moth that got trapped in a relay5.

2.1 Observable
Generally, bugs are recognized as erroneous behaviors
that lead to an observable error. This error might be
observed under normal operating conditions, and
therefore should be easy to detect. However, it might
require a combination and/or sequence of events to trigger
the condition that makes it rare. We need to be careful
about ‘rare’ because something that takes a lot of effort to
find in a verification environment, might trigger with

2 https://en.wikipedia.org/wiki/Root_cause_analysis
3 https://en.wikipedia.org/wiki/NP-hardness
4 https://en.wikipedia.org/wiki/There_are_known_knowns

alarming regularity in the final device running real
software payloads. Errors that manifest as some sort of
deadlock state are easier to detect in a real system, and it
may be possible to work around with a reset from a higher
privileged system. Errors that manifest as ‘denial-of-
service’ may require additional detection mechanisms to
be built into the verification environments that will catch
these conditions with time-outs. Errors that manifest as a
data corruptions can be ‘silent errors’ that could be more
damaging to the user application – imagine a data
corruption in your banking application! The infamous
Pentium FDIV6 bug was a data corruption, albeit one that
was never observed in real systems and discovered by
academics.

2.2 Non-Observable
An unreachable bug might exist in the code where the full
set of conditions required to trigger the bug cannot occur
and the bug can never propagate to an observable error.
Maybe some or all-but-one of the conditions can occur,
yet there is one key condition that prevents the error from
occurring. Is this a ‘bug’ or a ‘feature’? Such problems (or
non-problems) might be exposed through code review,
waveform analysis or formal verification. Is it wise to fix
this class of coding error? That depends on where you are
in the development cycle. Changing the code might
introduce a risk of inadvertently turning an unobservable
error into an observable error if the code is not 100%
understood. Leaving the code as is, might risk that a future
change could be disruptive if the code is non-intuitive, or
some other dependency elsewhere affects the
observability of the error.

Non-reachable bugs may be ‘time-bombs’
that cause a problem later on if the design

is changed.
They negatively impact code readability and
maintainability. Should design teams clean up all such
issues up with code re-factoring or do design teams
typically leave such code well alone for fear of breaking
the design? If an unsafe coding practice has been used,
then there is risk that changing it could introduce new
bugs, especially if “it’s not my code”, or “I wrote it a long
time ago” and “it's complicated and I'm not fully sure how
it works any more”.

This is where designer and verification engineer’s
experience and judgement come into play.

5 https://www.computerhistory.org/tdih/september/9/
6 https://en.wikipedia.org/wiki/Pentium_FDIV_bug

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

4

2.3 Vulnerabilities
There is a further category of bugs that can be better
described as vulnerabilities. With security being at the
forefront of concerns for modern computer technology,
and being architected and built into most systems today,
developers always need to be concerned about leaving
unintended vulnerabilities in the design that could be
exploited by malicious code, for example to access or leak
secure data by running non-secure software. A recent and
well publicized example of this is the security
vulnerability named as Spectre7/Meltdown8, which
affected a number or processors across the industry.
Again, these bugs were not found in real systems but were
exposed by the Google Project Zero team in an effort of
penetration testing or white-hat hacking9.

Other vulnerabilities fall under the category of ‘denial-of-
service’ attacks, where malicious code has the potential to
put the device into a locked state (e.g. live-lock or dead-
lock) so that the device is hindered from making forward
progress or responding to inputs.

This class of bug is oftentimes discovered through
explorative soak testing using constrained-random
generation methods. It can be the case that regular
software such as Kernels or Applications, or other code
that has been compiled, will never observe the
vulnerability, and so it exists only for the case of contrived
code. But of course, as a vulnerability, there is a
possibility that malicious code might exploit it for ill
intent, and because of this these sort of bugs are often
considered to be critical.

Finding such errors using the usual verification
environments can be challenging and efforts must be
taken to model threats and pro-actively verify them.
Security verification is a major consideration for most
hardware and software developers.

2.4 Auxiliary functions
Finally, there is a class of bug that may be considered to
be less impactful if it only impacts secondary or auxiliary
functionality of the system such as debug for example. So,
a processer for example, works correctly in normal
execution modes, but an error might manifest when using
the debug capabilities which might be considered an
inconvenience rather than rendering the device unusable.
In some cases, it may be possible to work around this
error, in others it might render the debug function
unusable in which case this is a more serious product
usability issue, especially for software developers.

7 So-named because the vulnerability arises from processors that
implement speculative execution and that the problem was considered
hard to fix and would therefore “haunt us for a long time”.
8 https://meltdownattack.com
9 https://en.wikipedia.org/wiki/White_hat_(computer_security)

Similar to debug functions, other supporting functions
such as performance or event counters might be
considered to be non-critical to the operation of the target
application but are helpful for software developers to
benchmark and optimize their code. Bugs in these
functionalities might manifest as accuracy errors that
would lead to false assumptions for the software
developer.

2.5 Safety-critical and Reliability
With products like processors going into more and more
safety-critical applications, safety and reliability is an
increasing concern for product designers. Products are
adding features to account for the reliability of the silicon
in terms of detection and correction of soft-errors (or
single event upsets – SEU), where one or more bits can be
flipped (typically in DRAM) by the presence of alpha
particles (from impurities in the packaging) or
background radiation. Designs typically employ ECC10
functionality to detect and correct single-bit failures and
to detect multi-bit failures (SECDED) for data stored in
memory. More sophisticated systems might employ lock-
step schemes where duplicated functionality and
comparison logic is used to detect behavioral errors from
SEUs affecting logic circuits as well as memory. As with
all functionality, this is also prone to functional bugs. The
severity of such bugs depends on the application. For
safety critical systems such bugs may be intolerable. For
non-safety-critical applications, they may be of lesser
concern. For example, if a bug requires a sequence of soft-
errors to occur with a certain timing, the probability may
be the product of two rare11 events, and the outcome may
still be a fatal error, but perhaps with incorrect error
logging. In a similar way to vulnerability verification,
detection of this class of bug requires some different
verification strategies such as injecting faults to trigger
logic that is otherwise quiescent in normal operation.

2.5.1 Performance Bugs
Sometimes bugs in functionality do not manifest as
functional errors but can impact the delivered
performance of the product. If this is deemed to be in
contradiction of the specification, it might be considered
to be a bug, if not by the developer, at least by the
customer, depending on the severity of the performance
loss. So, in this scenario we are saying an error in coding
does not result in incorrect function, there is no
corruption, deadlock or incorrect computation, but the
coding error has degraded performance in some way. A

10 https://en.wikipedia.org/wiki/ECC_memory
11 Studies have shown error rates ranging from 10−10 error/bit·h
(roughly one bit error per hour per gigabyte of memory) to
10−17 error/bit·h.

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

5

typical example of this class of bug might be a transient
‘starvation’ scenario, where under certain conditions,
which might be rare, a request is starved of a response for
significantly longer than expected, and this can manifest
as a hiccup in throughput that may not be noticed
immediately.

This class of bug is problematic for functional
verification. They may be detected from analysis of
benchmark results or performance verification suites.
They are often detected from code reviews or simply
observed when eye-balling waveforms and realizing that
something is not behaving as intended.

2.5.2 Clocking and Reset Bugs
Finally, there is a class of bug related to clock domains
crossing and asynchronous events such as resets. There
are specific tools available to check these cases, but we
will not discuss this class of bug here today.

3 When are bugs found?
The impact and severity of bugs very much depends on
when they are found. As a rule, bugs found earlier in the
development cycle are much less impactful and easier to
fix, although in extreme cases they may lead to some level
of re-architecting or be indicative of the need to refactor
large areas of code. However, this is much better done in
the early phases and may be too costly or not possible in
the later stages of development.

As a working hypothesis, the rate of finding bugs over the
development cycle may resemble a Gaussian distribution
with the mid-point being around or ideally before the beta
quality point but before the first release point. More than
90% of bugs are found within this verification window
where the effort tends to be in developing and bringing up
both the RTL and the verification environment in parallel
and achieving substantial levels of basic coverage.
However, the remaining ~10% of bugs will be found at
the later stages, where the effort is more focused on bug-
hunting through deep soak testing, stress testing, and
coverage-closure to hit the remaining harder-to-reach
coverage points. The machine and human effort applied
to finding these bugs is disproportionately high, but the
significance of these bugs is also much higher, since their
impact is potentially much greater and more costly.

As a hypothesis, >70% of the total
verification effort (or cost) may be

consumed in wringing out the last <10%
of the bugs, so these later bugs are high

effort/expensive bugs to find!

12 If using an Agile
(https://en.wikipedia.org/wiki/Agile_software_development) approach.

Any productivity improvements or efficiency gains
realized for this phase of testing can deliver a significant
saving on the overall development cost for the product.
Here’s my whiteboard view of what this looks like in
theory (clearly not real data!).

Figure 2: Bug discovery correlated with verification work

4 Recognizing where bugs
come from

4.1 Common Root Causes
It’s useful for designers and verification engineers to have
a good understanding of where bugs come from. Root
Cause Analysis as mentioned earlier is a great way to
build up learning retrospectively after bugs have
happened. Product teams can always review the post-
mortems or retrospectives12 from other teams to check
that they do not repeat the same mistakes, but how do
designers avoid bugs in the first place and recognize
situations where the risk of bugs is high?

Bugs can occur either while creating new code, or when
changing code. For example, bug-fixing or performance
tuning bugs generally occur while changing code.
Specification or interface bugs tend to occur when
creating new code but can still also occur due to code
changes.

The following table summarizes the typical root causes
for bugs. As with all data shown in this whitepaper the
data is not real and is for illustration purposes only.

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

6

Figure 3 Bug Root Causes

4.1.1 Specifications
Specifications are a common root cause of bugs. Errors in
the spec are likely to propagate into the RTL coding
unless detected by spec reviewing. However, it may not
be an error, and more of an ambiguity, that leads the spec
reader, the designer or the verification engineer, to make
a false assumption. With luck, the designer and the
verification engineer will make different assumptions
about what is the correct behavior, in which case there is
good chance that the verification environment will expose
the difference, and then the team has to arbitrate with the
spec owner as to which is correct and hopefully amend
and clarify it. This is a spec bug. However, it is also
possible that both arrive at the same, potentially incorrect
understanding, in which case the verification environment
cannot detect the error and we have a ‘common-mode-
failure’. Unless specifications are executable, there is a
manual and intellectual step to realize the spec into the
implemented design and the corresponding verification
environment.

Further, specs have been known to change (don’t laugh!).
Spec changes can be very costly and disruptive when
following a standard waterfall approach for product
development (historically typical for hardware
development projects), but they are expected, anticipated
and managed for those projects following an Agile
development process. However, late spec changes can
mean that functionality needs to be ‘bolted-on’ in some
cases, which can lead to non-elegant coding, unless the
designer chooses to refactor the code to take account of
the new requirements. The latter is the ideal, but in
practice not always achieved due to schedule pressure.
This obviously leads us back to poor code health and the
risk of the sort of bugs that arise from poor coding style.

4.1.2 Structure and Interfaces
Sophisticated hardware products these days are usually
too complicated for any one individual to maintain a
complete understanding of all functionality at any one

time. So, the problems have to be broken down into
logical units for both design and verification, and the
interfaces between these logical units also define the
interfaces between the people in the teams. Good
interfaces are pivotal in building a good hierarchical
design.

Most complex designs employ more than one designer.
Wherever the work needs to be partitioned between
humans, the boundaries need to be clearly defined with
well-defined interfaces. Most designs are partitioned to
multiple depths of hierarchy to ensure that functionality
can be encapsulated into humanly understandable chunks.
Each partition and sub-partition must have a rigorously
defined interface that both sides (usually different
developers) fully understand. Not surprisingly, interface
misunderstandings are a common source of bugs. If an
interface definition is at all ambiguous, it is highly
probable that different developers will make different
assumptions. They will develop and test their unit or
module in isolation finding no problems, but when
integrated together, they may fail. The gross miss-
understandings should become apparent very quickly and
are generally easily fixed, although in some cases might
lead to significant rewrite once the interface ambiguities
are resolved. More subtle errors might not be discovered
until much later or need complex conditions to trigger
them.

4.1.3 Code Churn
In common with software development, RTL code
development tends to be a somewhat iterative process. It’s
not usual to capture perfect code that never needs to be
further updated. Code can churn for various reasons as
follows. Each time the code is updated there is a risk of
deteriorating code health and introduction of new bugs.
There are four main causes of code churn: -

• Missing features – the full set of features may not be
captured in the first cast of the code, but
incrementally added, and this can affect the elegance
of the initial code if it wasn’t fully considered from
the start.

• PPA tuning – designers need to design for function
and PPA, but sometimes function takes priority and
code is subsequently iterated to achieve PPA targets.
These performance changes may be disruptive and
require a rethink of the micro-architecture or some re-
structuring of the design, and they can often increase
code complexity as ‘clever tricks’ are applied that
might be non-intuitive on first inspection. For
example, re-pipelining optimizations where logic is
moved from one side of a register to another in order
to meet timing requirements or save logic.
Sometimes multiple iterations occur to achieve the
target, each time potentially deteriorating code health
and increasing bug risk.

• Bug fixing – some bugs may be simple to fix, without
impacting code health. More complicated bug fixes

Verification

Copy-Paste

Typos

Missing Code

Perfomance Tuning

Bug Fixing

Refactoring

Interfaces

Specifications Creating
Changing

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

7

may require multiple lines of code or multiple
modules to be updated which increases the risk or
making a further mistake. Sometimes bug-fixes are
temporary patches to the code, with the intention to
revisit13 and clean up or refactor the code at a later
date. Complex bug fixes can take several goes to get
right and we find ourselves in a cycle of bug-fix upon
bug-fix in an attempt to get a clean pass of
verification. When this happens, you know that code
health is deteriorating and that might cause a problem
later on. In some cases, it is prudent to take stock and
reassess the code and consider if refactoring or
rewriting is going to be a better course in the long run.

• Refactoring – is normally done as a bug-mitigation
strategy. Cleaning up the code makes it more
readable and maintainable and so should reduce the
risk of bugs. Of course, sizable code re-writes will
also increase the risk of introducing new bugs
through lack of understanding of the intended
behavior maybe, especially if the refactoring is being
done by a different author.

4.1.4 Typos and copy-paste
For software and hardware developers, typos are the curse
of code authoring. Of course most of the glaring typos are
picked up by the HDL compiler, but it is so easy to miss
a term in an expression through a lapse in concentration,
or an interruption, or to miss-type a signal name by a
single character (yet for it to still be a valid signal name
so that code compiles despite this). It is also historically
more common in hardware coding than software coding
(where good practice is to reduce code duplication with
functions) to copy-paste large chunks of code to replicate
structures in the design. This is especially true when
replicating logic for performance tuning, or when there is
a behavioral structure that is similar but functionally
independent from the original. These replicated structures
can quickly get out of step if the linkage between them is
not tracked. A code update for one structure could be
accidently missed in its copy-pasted cousins. These errors
can sometimes be difficult to pick up from eye-balling the
code.

These are human errors, but we hope that good peer
reviewing, continuous integration (CI) testing, and basic
verification will quickly pick these errors up. A good
Integrated Development Environment (IDE) can help to
minimize these simple errors during code authoring, but
some will be missed. Of course, some escape only to be
very troublesome much further down the line.

13 Hopefully the author will leave a searchable “REVISIT” or similar
string in the code.

4.1.5 Verification Bugs
It would be remiss not to discuss bugs in the verification
environment since it is also a complex piece of
development, oftentimes similar in complexity to the RTL
Design. It also models the behaviors of the design in order
to perform independent checking. Since the verification
environment is also developed from an understanding or
interpretation of the design specification, it is prone to
similar errors which can lead to one of the following
situations: -

- False Positive: the test passes but fails to pick up an
erroneous result or behavior in the design.

- False Negative: the test fails but the design behavior
is correct.

The ‘false-negative’ is easier to detect since the test
reports a failure and debug needs to occur. However, there
is a risk that the wrong conclusion is reached. The
verification environment may be assumed to be correct,
and the design is then incorrectly adapted to make the
(incorrect) test pass. A new bug in introduced.

The ‘false-positive’ is more worrying as an error in the
design behavior has occurred but not been detected, so
this could be a ‘bug-escape’. This can be down to several
reasons. Either there is missing test coverage from the
verification environment (and this is not seen by analysis
of coverage data, e.g. there may be missing functional
coverage), or the designers and the verification engineers
have made a ‘common-mode’ assumption from their
misinterpretation of the spec, i.e. they both got it wrong in
the same direction. Hence the design contains a bug, and
the verification environment contains the same bug.

Because of this risk, it is important that the same level of
scrutiny (independent if possible) is applied to the
verification codebase as the RTL design code base.

4.2 A word about coding style and
readability

Coding style and code quality can be a major factor that
increases the risk of bugs. If code does not conform to
organizational coding rules, it can quickly become hard to
read and functionality becomes obfuscated. This is where
knowledge and understanding can be lost. The designer
himself may struggle to retain intimate knowledge of how
the code works with the passage of time, let alone others
being able to understand it should they be in the
unfortunate position of having to fix someone else’s code
at a later date. Some developers, in software and hardware
development, find commenting and documenting source
code to be tedious and an overhead that hinders
momentum and productivity. It also becomes an overhead
for maintenance. Out of date and incorrect comments are

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

8

likely worse than no comments as they are misleading,
e.g. when an update is made to the code (to fix a bug or to
implement a performance optimization) but not to the
comments in the interest of expediency. Again, this is part
of the design engineering craft. Good designers know how
to use comments and documentation appropriately and
how to write code that is clean, well-structured and where
the behavior is implicit and easy to understand.

Naming conventions aid code readability. Projects should
at least follow the agreed project coding rules and naming
standards, if not the organizational ones, especially if the
project team spans the organization or needs flexibility to
do so in the future.

Coding rules need to be obeyed and checking needs to be
automated using an HDL linting technology. Linting is a
well-established software methodology to improve code
quality, but also well established for HDL for many years
now. Many of these tools provide out-of-the-box rulesets,
or teams or organizations may develop their own custom
rulesets.

If a project team was to lose a key designer before the
product is complete, their code might be considered to be
abandoned. Another designer will need to pick up
ownership of the code and be confident in understanding
it so that they can change or develop the code further to
fix bugs, add functions or optimizations. Oftentimes when
code is hard to read, the adoption risk can be higher than
a code re-write. A code re-write can seem to be expensive
and disruptive, although in the long run it will likely save
time and cost.

Further, if a project is reusing a lot of code from a previous
project, they may have a similar issue to the one above
where the inherited code is less well understood or
conforms to a different set of coding rules and styles. The
original author may or may not be available to help. If said
code needs to be modified and cannot be treated as an
entirely reusable block (i.e. no changes at all are required),
there is risk of introducing bugs through lack of perfect
understanding of the original intent. Design teams need to
assess the risk when reusing code in this way, and
oftentimes although seemingly costly and inefficient, it is
better to rewrite the functionality using the inherited code
as a reference. This way the team knows that they can
support the rewritten code and understand it to the same
level as other units in the design.

4.3 A word about Complexity
Complexity can arise in RTL code for very good reasons.
The architecture that is being implemented may be
inherently complex, or the chosen micro-architecture
might be necessarily complex in order to meet challenging
PPA targets. After all, these things are the attributes that
will differentiate the product from the competition.

14 https://en.wikipedia.org/wiki/Cyclomatic_complexity

However, complexity in the RTL code needs to be
managed. Different RTL designers may have different
personal styles of writing RTL code, some being very
comfortable with a high degree of complexity in their
code, others may be less so, and all could still be operating
well within the project or organizational coding standards.
Not all units, blocks or modules are equal. Some are
purely structural and mainly consist of wiring to connect
up other sub-blocks. These modules can be very repetitive
and generally void of logic. Others might implement
complex state-machines or algorithms. Some designers
prefer to control the synthesis tools very tightly with
explicit gate-level coding. Others prefer to code at a more
behavioral level and leave the synthesis tools to arrive at
the optimal solution. In general, the behavioral code is
easier to read than the gate-level coding style, but
sometimes designers need to code at this low level in
order to constrain the implementation to meet their exact
requirements.

Additionally, clock-gating and low-power mechanisms
can add significant complexity to designs and may be non-
trivial to understand when reviewing the code.

There is no commonly agreed standard way to measure
complexity in RTL code. Software developers have been
using lines-of-code, McCabe cyclomatic-complexity14 or
code indentation-complexity15 to get some measure of
code complexity, but these do not always work so well for
HDLs. A search of the internet will find a handful of tools
that claim to offer HDL complexity analysis, often based
on McCabe cyclomatic-complexity. If you think about
complexity for logic circuits, you might also consider how
deep and wide the logic paths are between registers (the
logic-cone-of-influence) i.e. how many terms are
involved in determining the input to a register.

Designers typically rely on experience and engineering
judgement to estimate the complexity of RTL code, and
may refactor code to reduce risk when uneasy about their
ability to understand and maintain the code now or in the
future.

Complex RTL code can (but does not always) lead to
complex verification environments, and the propensity to
make coding errors then exists in both the RTL code and
the verification code.

Clearly, complexity increases the risk of
bugs, and the bugs themselves might be

subtle or complex.
They might not be triggered immediately, and then be
difficult to debug, especially if the outcome from the bug
does not become observable until a long time after the
trigger point.

15 https://github.com/adamtornhill/indent-complexity-proxy

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

9

5 Strategies to avoid bugs
How can design teams minimize the number of bugs that
get coded into the design? As we have already asserted
earlier, there is no such thing as a bug-free design, but
there are classes of bugs that are extremely hard to find –
the ‘unknown-unknowns’. We can’t account for them in
test planning, because we don’t know what they are. We
don’t have coverage goals to reassure ourselves that these
cases have been both stimulated and checked, because we
don’t know what they are. We ‘hope’ that comprehensive
random verification environments will eventually flush
them out. We can check to ensure that our random
constraints do not over-constrain the stimulus and that
sufficient16 ‘assurance-cycles’ have been run that the code
appears to be stable. We can review and re-review
everything in the verification environment and brainstorm
the question “what else can we do?”. We can adopt an
approach of continuous improvement. When a bug is
found, no matter how it is found, we need to ask the
question “why was this not found earlier?”. We need to
review the testing around this space to see if it can be
enhanced to increase the probability of triggering this bug
sooner and with higher frequency. We also want to check
for the presence of any sibling bugs that may be lurking
and use this hindsight to consider if other areas of
verification can be improved.

It’s not enough to endlessly improve the
verification environment (but we are

going to do that regardless), and we need
to look at how the design can be codified
in a way that minimizes bugs in the first

place, on the premise that not all bugs can
be found.

5.1 Reviewing
Good design reviewing practices can stop a lot of bugs
from ever even making it to the first simulation cycle. It’s
not fully reliable, but it has been shown to catch serious
bugs so that they never ‘pupate’ into ‘flying’ bugs. They
are eliminated at birth. This often means that these coding
errors are not recorded or recognized as bugs, it’s just a
part of the code-writing process. Code writers can review
their own code, and most will do so of course. Peer
reviewing is more powerful as a second set of eyes will
often pick up things that the code writer is blind to. A
good hardware development workflow will always
include a rigorous code reviewing process.

16 You have to analytically decide what sufficient means!
17 hidden from the programmer’s spec

5.2 Design Risk Mitigation Strategies
As we discussed earlier, oftentimes complexity is
necessary and unavoidable in order to achieve the
performance and functional targets of the design.
Sometimes significantly complex behaviors can be added
to achieve marginal performance gains. The aggregation
of all such gains can make the difference between hitting
the targets or not, but it may be possible to disable
individual optimizations in software, without crippling
the overall performance of the device. Designers often
practice this by adding hidden17 feature downgrade
configuration bits, which can be enabled should a
crippling bug arise in the optimization logic. These
programmer bits can be ‘get-out-of-jail-free’ bits should
this scenario arise as it allows the device to still function
thanks to a simple software patch, or at least buy some
time until the revised and fixed hardware is available. The
trick is to recognize when it is wise to add these bits.
Clearly if it was necessary to enable all such bits, the
resultant performance might no longer be within
acceptable limits. Beware however, that adding logic to
enable or disable behaviors extends the verification space
and introduces some marginal risk that the added logic
itself contains bugs. Further, be careful of any
interdependencies between these bits that might manifest
as unanticipated behaviors.

5.3 Designer Assertions
Use of assertions (typically SVA18) for hardware coding
is now common practice in the same way it has been for
software to catch unintended behaviors at the point of
failure, rather than later once (or if) the error has
propagated into an observable failure. Designers are well
placed to codify assertions as they codify the RTL code.
They are built-in checkers that are there only for the
purposes of verification. In general assertions are not
added as synthesizable code that end up being present in
final silicon (though in some circumstances they could be,
or it may be desirable to include them in the FPGA
verification environment for example).

The value of assertions written by the designers is that
they can be used to capture ‘intent’.

Actually, the very act of writing
assertions, which is codifying behavioral
assumptions that might otherwise have
remained in the designer’s head, can

catch bugs before they ever really come
into existence.

18 https://www.verificationguide.com/p/systemverilog-assertions.html

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

10

It’s that additional intellectual step, where the designer
might think “Oh, hang on, that doesn’t quite work does
it!”, leading to better code quality and less bugs before we
start. The assertions then also act as a really concise
documentation of how the function is intended to work,
and they are forever there for all verification cycles as
guardian checkers that will pick up behavioral
discrepancies and lead the development team straight to
the root of the problem with minimal debug effort. Of
course, as is the case with the verification environment in
general, the error could equally be in the assertion and not
the RTL code. But we would hope that those functional
differences between code and assertion will become
observable and can then be debugged and corrected. The
risk of ‘common-mode’ failure still exists, however.

Further value can be gained from assertions when formal
verification tools are used. If the designer assertions are
essentially describing properties of the design, it may be
that these properties can be formally explored and even
proven. Applying formal in this way acting on smaller
units of design can be very successful. Proven properties
can give a much higher level of assurance that the function
is correct under all possible circumstances (or at least hold
true for a convincing number of cycles – a ‘bounded
proof’), and if the RTL is built up on proven sub-
structures, we essentially have a ‘correct-by-construction’
approach to building the full design.

5.4 DevOps approaches from the
software development world

DevOps was first coined in 2009 and is born out of the
earlier movements of Lean and Agile. There has been a
largescale adoption of the ‘DevOps’ approach for
software development and deployment in recent years,
and pretty much any grown-up software company that is
provisioning a software platform to users, will be doing
so with a DevOps approach. If you want a good
introduction to DevOps try Ref [1], though this is a much-
documented area. Any major social media platform you
can think of, Cloud services, on-line banking platforms,
etc. etc. will be following the DevOps methods out of
necessity, since they are developing, delivering and
operating business-critical platforms. They cannot afford
to make mistakes when deploying new features to the
platform, that might result in a service outage for hours,
or days, or longer while their developers are working to
issue a patch and restore the service. Through DevOps,
product owners, developers, QA, IT operations, and
security specialists work together, not only to help each
other, but to ensure that the overall organization succeeds.

19 https://jenkins.io
20 https://about.gitlab.com

They enable a fast flow of planned work
into production, performing tens,

hundreds or thousands of code-deploys
per day, while achieving world-class
stability, reliability, availability and

security. This is why DevOps is mission
critical.

Hardware development teams might consider that they are
all about ‘Dev’ and less so about ‘Ops’. However, there
are elements of DevOps that can be applied in the
hardware development space. I won’t attempt to explore
all ideas here but some examples from Ref [1] include: -

• Continuous Integration
• Pair Programming
• Blame-free Retrospectives
• Trunk-based development
• Code Refactoring built into the workflow
• Swarming on defects
• Test-driven code development
• Telemetry (operational analytics)

5.4.1 Continuous Integration
Central to DevOps is the concept of CICD (Continuous
Integration/Continuous Delivery (or Deployment). This is
where development teams build and operate a CICD
pipeline that starts with the commit of changes, which are
then automatically tested by continuous integration suites,
and then automatically built and deployed to the target
platform usually through a pipeline of deployment
environments such as development, test, staging and
production.

Continuous Integration (CI) is a methodology borrowed
from software development and commonly adopted for
hardware design and verification teams. It says that we
continuously build, test, and integrate our code and
environments, increasing the frequency of integrating and
testing from periodic to continuous. This helps to reduce
the amount of broken code that gets checked-in and can
be thought of as an ‘trunk is always-working’ model. The
trick is how to decide what tests from the entirety of the
testing environment should be selected for CI testing to
give sufficient coverage that the code is essentially
working, leaving the deeper ongoing exploratory testing
to the main regression and soak testing environments.

There are opensource (e.g. Jenkins19) and commercially
supported CI systems available. CI is often a component
of more comprehensive CICD workflows such as
Gitlab20, or Bitbucket21.

21 https://bitbucket.org/product/

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

11

5.4.2 Automated Code Reviewing (Pair-
programming)

Many software development teams are adopting the Agile
concept of pair-programming22 practices and automating
this process using one of the available code review
solutions such as Gerrit23 or Gitlab. Gerrit is a GIT24
server that provides code review and access controls on
the GIT repository. With Gerrit, when a developer makes
a change, it is sent to this store of pending changes, where
other developers can review, discuss and approve the
change. After enough reviewers grant their approval, the
change becomes an official part of the codebase. In
addition to this store of pending changes, Gerrit captures
notes and comments about each change. These features
allow developers to review changes at their convenience,
or when conversations about a change can’t happen face
to face. They also help to create a record of the
conversation around a given change, which can provide a
history of when a change was made and why.

Figure 4 Gerrit workflow25

This workflow enforces a much higher level of scrutiny
and ensures that knowledge about the code and how it
works is shared with at least one other person, preferably
more. It also ensures that all coders are aligning to a
common coding standard and quality by enforcing this
cross-checking. Of course, there is an overhead to this, in
the additional time and rigor required to commit code, and
this may be in conflict with the need for expediency and
delivery pressure. At the end of the day, it’s a trade-off
between more time taken on high quality coding, against
potential time lost and delay from complex debugging and
bug-fixing later on, and ultimately on final product
quality.

22 https://en.wikipedia.org/wiki/Pair_programming
23 https://www.gerritcodereview.com/
24 https://git-scm.com

5.4.3 Code Refactoring and Technical Debt
Technical debt26 (also known as design debt or code debt)
is a concept in software development that reflects the
implied cost of additional rework caused by choosing an
easy (limited) solution now instead of using a better
approach that would take longer.

Technical debt can also easily accrue in hardware
development, as quick fixes or sub-optimal coding may
be applied to make fast progress towards critical project
milestones, with a view that this can be cleaned up at a
later date. Oftentimes it is done knowingly with a “revisit”
comment in the code that can be parsed for with scripting
later.

I’ve taken the following good summary of refactoring
from Wikipedia27:-

“Code refactoring is the process of restructuring existing
computer code—changing the factoring—without
changing its external behavior. Refactoring is intended to
improve nonfunctional attributes of the software.
Advantages include improved code readability and
reduced complexity; these can improve source-code
maintainability and create a more expressive internal
architecture or object model to improve extensibility.

If done well, code refactoring may help software
developers discover and fix hidden or dormant bugs or
vulnerabilities in the system by simplifying the underlying
logic and eliminating unnecessary levels of complexity. If
done poorly it may fail the requirement that external
functionality not be changed, introduce new bugs, or
both.”

Refactoring is just as applicable to hardware development
as software development and is a best practice that design
teams should adopt, despite this sometimes being in
conflict with schedule pressures, since it may pay off
significantly in the longer term, due to higher quality and
better readability and maintainability of the codebase.
Refactoring needs to be planned into the development
schedule, whether waterfall or agile. According to Ref [1],
software development teams are recommended to plan in
at least 20% of time for code refactoring. There is no
reason why this guideline would not be fully applicable to
hardware code development.

25 https://www.gerritcodereview.com/intro-how-gerrit-works.html
26 https://en.wikipedia.org/wiki/Technical_debt
27 https://en.wikipedia.org/wiki/Code_refactoring

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

12

6 How data and analytics
can help?

6.1 Coverage Analytics
Code Coverage and Functional Coverage give indications
of progress for verification efforts. Both are required and
both need to be tracked with regular analysis and review
of coverage gaps, leading to ongoing refinements in the
verification environment. Branch and line code coverage
simply tells us that lines of Verilog have been visited
during testing, whereas expression or FSM coverage can
give more detailed insights into how expressions have
been triggered. This usually requires some manual review
to understand what is reachable (and therefore should be
hit) versus what is unreachable and will never be hit. In
this sense there is a notion of completeness about code
coverage in that every line of RTL code is there for a
purpose, and should be executed at least once, unless the
RTL code is in fact redundant. If reviewing confirms that
this is redundant code, then it should be removed, as it has
no purpose. Functional coverage does not have the same
notion of completeness. Full coverage of the implemented
coverage points can be achieved, but how do we know that
our functional coverage model is complete? We don’t! It’s
a best effort based on a process of brainstorming,
reviewing, feedback and iterative refinement.

However, coverage is typically the set of metrics that gets
the most attention in terms of assessing verification
progress and signing off completion.

Finally, it is most important to remember
the following: -

Covered != Verified

Sadly, meeting coverage goals alone does not guarantee
an absence of bugs.

6.2 Bug Analytics
Bug tracking and analytics is a good way to understand
verification progress. It requires some rigor in the
consistent capture of bug data, which is sometimes not the
highest priority when making a rapid fix and making
progress is imperative. But bug data is a rich measure of
the state of the design and the value of the verification
work that is being done. It is important to be aware that a
lack of finding bugs with the current environment, does
not necessarily indicate victory, even though coverage
targets may have been met. It may be simply that the
current verification environment has saturated, it is no
longer capable of finding further bugs, and we do not
know if there remain unexplored sequences where further
bugs may lurk. So, saturation is really a checkpoint where
the engineering team need to scrub the verification

environment to consider if it can be further extended. At
the end of the day, engineering experience and judgement
tell us if all conceivable cases are being explored or not,
and if some are not, what the risk or likelihood is that
critical bugs are being missed.

This plateauing of the cumulative bug discovery curve
over time gives a visual indication of these verification
saturation points.

Figure 5 Progression of the cumulative bug curve

Note that the cumulative bug curve might not be a smooth
ideal progression. There may several false saturation
points on the way where the curve appears to be flattening
off, but then further changes to the RTL codebase, or
transitions to other verification environments might
trigger further phases of active bug discovery.

Better still is to correlate the verification effort (as cycles,
or CPU hours for example), with the bug discovery rate.
This will help us to identify situations where bugs are no
longer being discovered despite significant ongoing
verification effort such as continued soak testing. Further
to this, if we correlate source-code commits for both the
RTL and the verification environment, we can reason
about why we might be running (and consuming
resources) when bugs are not being found, and the RTL
and verification code is static. We are in a “saturation
zone” where further verification effort is no longer
yielding bugs, and we have to decide when to stop. In a
world of constrained-random testing methodologies, we
can continue to run marginally different cycles infinitely.
This poses some questions for the hardware development
team.

1. What is the magic target for bug-free and change-free
verification that we are happy to sign-off against
when we achieve it?

2. If a bug is subsequently discovered deep into this
saturation zone, will we need to revise the target (and
if so by how much?) and reset the release testing
clock?

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

13

Figure 6 Bug discovery correlated with effort and code change

6.3 Bug Prediction
How great would it be if we knew precisely how many
bugs our design contains and can measure our bug
discovery progress against this?

 Imagine: “I’ve got 23 bugs left to find
and when I have found them, we are all

done!”.
What would an imaginary bug prediction curve look like
and how would we reason about any gaps between
predicted and actual?

Figure 7 Imaginary Bug Prediction Curve

However, there have been some efforts, perhaps not that
widely known, to make sensible predictions of how many
bugs a design will contain. Again, these studies are
typically within the software development domain. Some
ideas28 have been presented several years ago that show
good results for hardware bug curve predictions that use
the Rayleigh Distribution Model. Can prediction models
help us to at least approximate our bug projections to give
some guidance on how we are performing in a data-driven
way? I’m not saying there are perfect solutions here, but
it may warrant some further research, especially in a
world where Machine Learning is proliferating into all
sorts of complex prediction problems. Given a clean bugs-

28
https://www.testandverification.com/DVClub/24_Jan_2011/Greg_Smit
h.pdf

dataset for a comparable design, can we experiment with
ML algorithms (such as Decision Trees, Naïve Bayes,
Artificial Neural Networks (ANNs) for example) and
some basic feature engineering to determine which bug
and design metrics are most important and give the best
prediction results? I’m not recommending a specific
solution here, as that would be a whole whitepaper in
itself, but it seems like a rich area for data science. The
success or failure of this will be very dependent on how
much data is being consistently collected for bugs. A good
bug schema is needed that will ensure data collection goes
beyond simply describing the bug itself. Bug
classification details, impact and root causes will be
needed. Also, data related to code churn, code size,
complexity measures etc. will be important factors. A
quick web search will reveal several research studies of
this, again mostly in the software development domain.
But there is no reason why these techniques could not map
to hardware development with a little effort.

6.4 Codebase Analytics
There is a rich dataset that is less often analyzed for RTL
design projects and this is the revision control system
data, GIT for example. Version control practices can vary
from team to team but if used in a consistent way by the
development team, the GIT repository can give insights
into the health of our codebase, e.g. whereabouts are the
problem areas in the design or the verification
environment. This would be indicated either by size
and/or complexity of the code or commit rates that
indicate code churn hotspots. Understanding where those
hotspots are might be beneficial when considering where
to focus verification efforts or when to consider any code
refactoring. This is another example of where methods
used by software developers could be used for hardware
developers.

There is an excellent book that covers this topic, Ref [2],
with supporting website and analytics tooling available.
The title points to the use of forensic techniques to
understand defects and bad design in programs. The
Author (Adam Tornhill) introduces the idea of ‘hotspots’
that represent complex parts of the code base that have
changed quickly because frequent changes to complex
code usually indicate declining quality. The richness of
the GIT data is that it contains the evolution of the
codebase over time. In the book and the website, he shows
some powerful interactive visualizations of hot-spots, that
make it easy to identify areas of concern and analyze how
they change over time. A complexity metric is required to
do this (recall the discussion on complexity earlier), and
for software developers there are several options such as
simply counting lines of code (LOCs - comments and
blank lines), or McCabe cyclomatic complexity.

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

14

However, Tornhill recommends the use of a simpler code
indentation metric which works well when source code is
properly structured and in general the level of indents is a
good indicator of how the code is constructed and the
number of decision levels that exist. For Verilog or
VHDL, this complexity metric may not be appropriate
however, especially given the variation between simple
structural modules, that are mostly wiring for example,
versus more complex modules that might encode
algorithms or state machines, and also behavioural coding
styles versus instantiated gates coding styles.
Nonetheless, simple LOC measures correlated with
commit data is still likely to be a highly useful indicator
of areas of concern. If you have a viable complexity
metric you can then track and visualise how that
complexity changes over time, identifying situations
where complexity is growing to a level of concern, that
might suggest some code refactoring is needed, and then
how that looks after the refactoring. Further, it may be
possible to identify unknown linkages or couplings in the
codebase. Commits that tend to occur in groups where the
coupling between files is not necessarily obvious is giving
us further insights into how the codebase is structured that
will help us to understand where bugs and other defects
might occur.

Figure 8 Screenshot of Hotspot visualization29 taken from codescene

The above screenshot is taken from Tornhill’s website30
and shows an interactive visualisation of hotspot analysis.
This view shows the relative complexity of each code
module (in this case C) by size, and the commit rate by
colour – the darker cells indicating highest commit rate.
The viz can also be flipped to show code age, defects and
refactoring targets. The darker cells above are clearly the
obvious targets to consider for refactoring.

Tornhill goes on to examine other aspects of the GIT data
that can be of interest and relevance to hardware
development. He refers to social aspects of code. For

29
https://codescene.io/projects/171/jobs/15343/results/code/hotspots/syst
em-map

example, the GIT repository contains interesting data on
who has made commits, this being the development team
in general. It’s useful to understand what code is owned
by which developers, how this changed over time, or to
identify ‘abandoned code’ where the main developer has
left the team or the organisation. In this case the team need
to consider how the code will be re-adopted and then if
the code is in a state where it can be done so with
confidence or needs to be recoded in order to be fully
understood.

Tornhill’s work also considers the codebase from an
architecture and a project management point of view. See
Tornhill’s blog31 for further details.

7 Conclusion
While hardware developers think differently about how
they develop their product to software developers, there
are many overlaps. After all, both are developing code to
implement their products. Hardware developers being
confined to Verilog, SystemVerilog or VHDL in the main,
while software developers have many rich software
languages to choose from these days. The stakes for both
are equally high. A critical hardware bug might incur
significant hardware re-work costs. If impactful bugs
make it into the field, products may be degraded in
function or performance due to impactful workarounds, or
even recalled in extreme circumstances. Building silicon
and building hardware products is an expensive business.
However, developing and operating complex software
platforms with vast numbers of users is equally expensive
and damaging when the platform is unavailable or
financial damage has been wrought by a critical security
issue for example. The software development world has
embraced the principles of Agile and DevOps to ensure
that such systems can be operated with great reliability
and can be updated and deployed to users quickly and
silently, and rapidly rolled-back if things go wrong. Some
of this learning from the software development world can
be applied to the hardware development world (excluding
rapid roll-back maybe!).

It is also important to understand the nature of bugs and
the scenarios that can lead to them. What are the origins
of bugs and what strategies can be applied to minimize
them?

Data analytics is a useful toolbox that is available to us
when dealing with complex hardware or software product
developments. Getting to grips with the data so that it can
be used effectively can be a significant effort. Datasets
needs to be clean and complete. Good visualizations are
incredibly powerful for telling the story of the data and
communicating insights quickly. You should never

30 Permission kindly granted by Adam Tornhill
31 https://empear.com/blog/codescene-prioritize-technical-debt-in-react/

On the Origin of Bugs

Copyright © 2020 Valytic Consulting. All rights reserved.

15

underestimate the power of the human brain for pattern
recognition when data is presented in a visual form rather
than rows and columns of numbers. Machine Learning is
becoming a powerful tool for building useful predictions
from that data and using this learning to reduce
development efforts and increase productivity.

8 References
1. The DevOps Handbook: Kim, Humble, DeBois,

Willis
2. Your Code as a Crime Scene: Adam Tornhill

(https://www.adamtornhill.com/articles/crimesc
ene/codeascrimescene.htm)

