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Abstract 
Where do bugs come from? What are the common ways 
that bugs are introduced into designs and what can design 
engineers and verification engineers jointly do to avoid 
them? 

  

1  Introduction 
Note that I am writing this whitepaper from the 
perspective of several decades in the semiconductor 
industry, working for a highly successful IP company 
(whose roots are firmly in CPU design), and working in 
the field of Design Verification, which means I have spent 
a lot of my career thinking about and analyzing bugs! This 
whitepaper does not set out to publish a new or novel 
approach to verification or bug discovery, but instead to 
provide an overview of bugs in a hardware design context, 
with some insights into what causes bugs and some 
strategies that can be used to avoid them. Some of these 
strategies are already familiar to software developers and 
may be equally applicable to hardware developers. Many 
hardware developers are already using some or all of them 
anyhow. Finally, as data science becomes increasingly 
accessible as a tool to solve many problems in many 
fields, including engineering, I take a very high-level view 
on how analytics can be applied to the bug analytics 
problem.  

Note that the data visualizations shown in 
this paper are hypothetical drawings and 

not graphs of real data. 

1.1  Why do we still have bugs (and 
jobs as verification engineers)? 

How do you design a complex hardware IP such as a 
processor that is fully verified? Hardware is getting more 
complex and bugs are getting correspondingly more 
complex. It is sometimes mind-bending to fully 
understand the convoluted conditions that lead to bugs 
being activated. The chances of these conditions arising 
may seem remote when analyzing the bug using the 
verification environment. However, what you have to 
consider is that complex IP products such as CPUs, GPUs, 
IoT, ML and other System IPs are being deployed into 
billions of devices, within many unique environments, 
and executing vast masses of OS and application software 
at GHz speeds. This means that those bugs observed in 
your verification environments, which you believe to be 
extreme and rare, might adversely affect entire product 
lines of deployed technology with many unforeseen 
consequences. The stakes for hardware IP developers 
have never been higher.  

Building functionally correct products is the shared 
responsibility of both the design team and the verification 
team. It’s a false assumption that complex designs like 
processors can be exhaustively verified, and that the final 
design can be free of all bugs.  

I assert that:  
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All complex designs contain bugs. 
Verification can never achieve completeness and designs 
must be built in a way that fully accounts for verification 
achievability.  

My second assertion is that:  

Verification is a resource limited ‘quest’ 
to find as many bugs as possible before 

shipping. 
It is common practice to separate these two roles out and 
identify them as distinct disciplines. Verification 
Engineers should employ strategies that increase the 
chances to find all bugs. Design Engineers should employ 
strategies that minimize the risk of bugs occurring. 

These two disciplines require many shared skills and 
some unique ones as shown in the following Venn 
diagram.  

 
Figure 1 Design and Verification Skills Venn Diagram 

1.1.1  Hardware Designer Engineers 
Design teams focus on achieving both functional and 
physical goals such as power, performance and area 
(PPA). These goals define the product as much as the 
functionality and make the difference between a 
successful product and an unsuccessful one. Designers are 
highly skilled in logic design and understand how the 
HDL1 translates into actual gates and registers as it passes 
through front-end design tools such as synthesis and 
timing-analysis. They understand complex architectures 
and micro-architectures and how to exploit them to 
optimize functional performance. They must understand 
system level architectures and how their product works in 
a system environment and how software will use it. They 
know how to balance functional performance with 
physical performance. For example, how to optimize 
‘work-output per unit of energy’ for a processor. There are 
many front-end EDA tools to master and they need a good 
understanding of implementation workflows and how 
their RTL code transforms to physical circuits on silicon. 
Good designers are constantly aware of the power 

 
1 Hardware Description Language (Verilog, VHDL, SystemVerilog) 

consumption of their logic, and design everything with 
power-efficiency and low-power in mind.  

Design is a discipline of craftsmanship where good design 
emerges from bringing together decades of experience, 
knowhow and training, skills and talent, ingenuity and 
innovation, and attention to detail.  

1.1.2  Hardware Verification Engineers 
Designers are perfectly capable of performing the 
verification of their own designs, but it is accepted good 
practice, where resources are available, that the 
verification tasks are undertaken by dedicated verification 
engineers who have a slightly different skillset and with 
the added benefit of an independent interpretation of the 
design specification. This independent understanding of 
the specification can often expose specification 
ambiguities or misinterpretations in the early test planning 
phase, before expensive verification testing cycles have 
been run.  

Verification Engineers (sometimes referred to as Design 
Verification Engineers or DV Engineers) need a broad set 
of disciplines which may be more biased towards software 
development these days, but also with a head for 
understanding hardware specifications, architectures and 
RTL code. There are many verification tools and 
languages that have emerged over recent decades that DV 
Engineers must master such as SystemVerilog, 
Emulators, FPGAs, Formal Verification etc. They will 
also will be constructing much of the stimulus with 
software programs written in various languages from 
Assembler to C, and they will be masters of scripting and 
building bespoke tools and infrastructures to automate 
and optimize testing to reach bugs more quickly, extend 
the search areas more deeply, and optimize the available 
infrastructures upon which verification is executed. They 
must also be masters of data analysis, since verification 
work generates much data. Sifting and analyzing data to 
understand verification progress while the design and 
verification environments are constantly changing, is also 
a major challenge. Coverage is a key concept for turning 
verification into a measurable process.  

Verification engineers have a few specific personality 
traits. After all they appear get their kicks from 
demonstrating that something is broken!  

I like to describe this as the ABC verification philosophy.  

Assume nothing; Believe no-one; Check 
everything! 

However, they have the same objectives as the design 
team. They want to deliver a bug-free high-quality 
product, and they want to share the glory for that as much 
as the design team. When serious bugs are missed and 
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make it through to the end product, the responsibility is 
equally shared. Teams should adopt strong practices of 
blame-free Root Cause Analysis (RCA2) to understand if 
the escape was due to an omission of verification or a 
weakness of design, or a combination of both. They can 
then apply appropriate corrective actions to one or both 
areas to ensure that the learning is captured and 
implemented for the current product, sibling products, 
future products and maybe even looking back at legacy 
products. It is vital that good practices of knowledge 
sharing ensure that bug learnings are shared openly within 
the organization through RCA. When bugs affect shipped 
products, there must be credible evidence of 
organizational learning that will rebuild customer 
confidence. This philosophy of continuous marginal 
improvements will aggregate to significant and 
measurable overall improvements over time.  

The nature of the task does foster some healthy 
competition between the disciplines to build clean code 
and to wring out all of the bugs, no matter how obscure 
they might be. Both roles are intellectually demanding 
and rewarding.  

2  When is a bug a bug? 
All complex designs contain bugs, without exception. No 
design can ever be bug-free. Verification is an NP-Hard3 
problem, i.e. there is no perfect solution. Verification is a 
time and resource-limited quest to find as many bugs as 
possible, caveated by evidencing no known impactful 
bugs (known-knowns4), and also to ensure that coverage 
goals and stability targets have been achieved (known-
unknowns), at the point of product delivery. Of course, 
this leaves the remaining bugs that will likely be present 
in the shipped products (the unknown-unknowns), and we 
hope that should they emerge, they are not impactful 
and/or can be satisfactorily worked around in the field.  

So, what makes a bug into a bug? Let’s talk about 
functional bugs for now. I will omit the usual tale of the 
moth that got trapped in a relay5.  

2.1  Observable  
Generally, bugs are recognized as erroneous behaviors 
that lead to an observable error. This error might be 
observed under normal operating conditions, and 
therefore should be easy to detect. However, it might 
require a combination and/or sequence of events to trigger 
the condition that makes it rare. We need to be careful 
about ‘rare’ because something that takes a lot of effort to 
find in a verification environment, might trigger with 

 
2 https://en.wikipedia.org/wiki/Root_cause_analysis  
3 https://en.wikipedia.org/wiki/NP-hardness  
4 https://en.wikipedia.org/wiki/There_are_known_knowns  

alarming regularity in the final device running real 
software payloads. Errors that manifest as some sort of 
deadlock state are easier to detect in a real system, and it 
may be possible to work around with a reset from a higher 
privileged system.  Errors that manifest as ‘denial-of-
service’ may require additional detection mechanisms to 
be built into the verification environments that will catch 
these conditions with time-outs. Errors that manifest as a 
data corruptions can be ‘silent errors’ that could be more 
damaging to the user application – imagine a data 
corruption in your banking application! The infamous 
Pentium FDIV6 bug was a data corruption, albeit one that 
was never observed in real systems and discovered by 
academics.  

2.2  Non-Observable 
An unreachable bug might exist in the code where the full 
set of conditions required to trigger the bug cannot occur 
and the bug can never propagate to an observable error. 
Maybe some or all-but-one of the conditions can occur, 
yet there is one key condition that prevents the error from 
occurring. Is this a ‘bug’ or a ‘feature’? Such problems (or 
non-problems) might be exposed through code review, 
waveform analysis or formal verification. Is it wise to fix 
this class of coding error? That depends on where you are 
in the development cycle. Changing the code might 
introduce a risk of inadvertently turning an unobservable 
error into an observable error if the code is not 100% 
understood. Leaving the code as is, might risk that a future 
change could be disruptive if the code is non-intuitive, or 
some other dependency elsewhere affects the 
observability of the error.  

Non-reachable bugs may be ‘time-bombs’ 
that cause a problem later on if the design 

is changed.  
They negatively impact code readability and 
maintainability. Should design teams clean up all such 
issues up with code re-factoring or do design teams 
typically leave such code well alone for fear of breaking 
the design? If an unsafe coding practice has been used, 
then there is risk that changing it could introduce new 
bugs, especially if “it’s not my code”, or “I wrote it a long 
time ago” and “it's complicated and I'm not fully sure how 
it works any more”.  

This is where designer and verification engineer’s 
experience and judgement come into play.  

5 https://www.computerhistory.org/tdih/september/9/  
6 https://en.wikipedia.org/wiki/Pentium_FDIV_bug  
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2.3  Vulnerabilities 
There is a further category of bugs that can be better 
described as vulnerabilities. With security being at the 
forefront of concerns for modern computer technology, 
and being architected and built into most systems today, 
developers always need to be concerned about leaving 
unintended vulnerabilities in the design that could be 
exploited by malicious code, for example to access or leak 
secure data by running non-secure software. A recent and 
well publicized example of this is the security 
vulnerability named as Spectre7/Meltdown8, which 
affected a number or processors across the industry. 
Again, these bugs were not found in real systems but were 
exposed by the Google Project Zero team in an effort of 
penetration testing or white-hat hacking9.  

Other vulnerabilities fall under the category of ‘denial-of-
service’ attacks, where malicious code has the potential to 
put the device into a locked state (e.g. live-lock or dead-
lock) so that the device is hindered from making forward 
progress or responding to inputs. 

This class of bug is oftentimes discovered through 
explorative soak testing using constrained-random 
generation methods. It can be the case that regular 
software such as Kernels or Applications, or other code 
that has been compiled, will never observe the 
vulnerability, and so it exists only for the case of contrived 
code. But of course, as a vulnerability, there is a 
possibility that malicious code might exploit it for ill 
intent, and because of this these sort of bugs are often 
considered to be critical.  

Finding such errors using the usual verification 
environments can be challenging and efforts must be 
taken to model threats and pro-actively verify them. 
Security verification is a major consideration for most 
hardware and software developers.  

2.4  Auxiliary functions 
Finally, there is a class of bug that may be considered to 
be less impactful if it only impacts secondary or auxiliary 
functionality of the system such as debug for example. So, 
a processer for example, works correctly in normal 
execution modes, but an error might manifest when using 
the debug capabilities which might be considered an 
inconvenience rather than rendering the device unusable. 
In some cases, it may be possible to work around this 
error, in others it might render the debug function 
unusable in which case this is a more serious product 
usability issue, especially for software developers. 

 
7 So-named because the vulnerability arises from processors that 
implement speculative execution and that the problem was considered 
hard to fix and would therefore “haunt us for a long time”. 
8 https://meltdownattack.com  
9 https://en.wikipedia.org/wiki/White_hat_(computer_security)  

Similar to debug functions, other supporting functions 
such as performance or event counters might be 
considered to be non-critical to the operation of the target 
application but are helpful for software developers to 
benchmark and optimize their code. Bugs in these 
functionalities might manifest as accuracy errors that 
would lead to false assumptions for the software 
developer.  

2.5  Safety-critical and Reliability 
With products like processors going into more and more 
safety-critical applications, safety and reliability is an 
increasing concern for product designers. Products are 
adding features to account for the reliability of the silicon 
in terms of detection and correction of soft-errors (or 
single event upsets – SEU), where one or more bits can be 
flipped (typically in DRAM) by the presence of alpha 
particles (from impurities in the packaging) or 
background radiation. Designs typically employ ECC10 
functionality to detect and correct single-bit failures and 
to detect multi-bit failures (SECDED) for data stored in 
memory. More sophisticated systems might employ lock-
step schemes where duplicated functionality and 
comparison logic is used to detect behavioral errors from 
SEUs affecting logic circuits as well as memory. As with 
all functionality, this is also prone to functional bugs. The 
severity of such bugs depends on the application. For 
safety critical systems such bugs may be intolerable. For 
non-safety-critical applications, they may be of lesser 
concern. For example, if a bug requires a sequence of soft-
errors to occur with a certain timing, the probability may 
be the product of two rare11 events, and the outcome may 
still be a fatal error, but perhaps with incorrect error 
logging. In a similar way to vulnerability verification, 
detection of this class of bug requires some different 
verification strategies such as injecting faults to trigger 
logic that is otherwise quiescent in normal operation. 

2.5.1  Performance Bugs 
Sometimes bugs in functionality do not manifest as 
functional errors but can impact the delivered 
performance of the product. If this is deemed to be in 
contradiction of the specification, it might be considered 
to be a bug, if not by the developer, at least by the 
customer, depending on the severity of the performance 
loss. So, in this scenario we are saying an error in coding 
does not result in incorrect function, there is no 
corruption, deadlock or incorrect computation, but the 
coding error has degraded performance in some way. A 

10 https://en.wikipedia.org/wiki/ECC_memory  
11 Studies have shown error rates ranging from 10−10 error/bit·h 
(roughly one bit error per hour per gigabyte of memory) to 
10−17 error/bit·h. 
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typical example of this class of bug might be a transient 
‘starvation’ scenario, where under certain conditions, 
which might be rare, a request is starved of a response for 
significantly longer than expected, and this can manifest 
as a hiccup in throughput that may not be noticed 
immediately.  

This class of bug is problematic for functional 
verification. They may be detected from analysis of 
benchmark results or performance verification suites. 
They are often detected from code reviews or simply 
observed when eye-balling waveforms and realizing that 
something is not behaving as intended.  

2.5.2  Clocking and Reset Bugs 
Finally, there is a class of bug related to clock domains 
crossing and asynchronous events such as resets. There 
are specific tools available to check these cases, but we 
will not discuss this class of bug here today.  

3  When are bugs found? 
The impact and severity of bugs very much depends on 
when they are found. As a rule, bugs found earlier in the 
development cycle are much less impactful and easier to 
fix, although in extreme cases they may lead to some level 
of re-architecting or be indicative of the need to refactor 
large areas of code. However, this is much better done in 
the early phases and may be too costly or not possible in 
the later stages of development.  

As a working hypothesis, the rate of finding bugs over the 
development cycle may resemble a Gaussian distribution 
with the mid-point being around or ideally before the beta 
quality point but before the first release point. More than 
90% of bugs are found within this verification window 
where the effort tends to be in developing and bringing up 
both the RTL and the verification environment in parallel 
and achieving substantial levels of basic coverage. 
However, the remaining ~10% of bugs will be found at 
the later stages, where the effort is more focused on bug-
hunting through deep soak testing, stress testing, and 
coverage-closure to hit the remaining harder-to-reach 
coverage points. The machine and human effort applied 
to finding these bugs is disproportionately high, but the 
significance of these bugs is also much higher, since their 
impact is potentially much greater and more costly.  

As a hypothesis, >70% of the total 
verification effort (or cost) may be 

consumed in wringing out the last <10% 
of the bugs, so these later bugs are high 

effort/expensive bugs to find!  

 
12 If using an Agile 
(https://en.wikipedia.org/wiki/Agile_software_development) approach. 

Any productivity improvements or efficiency gains 
realized for this phase of testing can deliver a significant 
saving on the overall development cost for the product. 
Here’s my whiteboard view of what this looks like in 
theory (clearly not real data!). 

 

 
Figure 2: Bug discovery correlated with verification work 

4  Recognizing where bugs 
come from 

4.1  Common Root Causes 
It’s useful for designers and verification engineers to have 
a good understanding of where bugs come from. Root 
Cause Analysis as mentioned earlier is a great way to 
build up learning retrospectively after bugs have 
happened. Product teams can always review the post-
mortems or retrospectives12 from other teams to check 
that they do not repeat the same mistakes, but how do 
designers avoid bugs in the first place and recognize 
situations where the risk of bugs is high? 

Bugs can occur either while creating new code, or when 
changing code. For example, bug-fixing or performance 
tuning bugs generally occur while changing code. 
Specification or interface bugs tend to occur when 
creating new code but can still also occur due to code 
changes.  

The following table summarizes the typical root causes 
for bugs. As with all data shown in this whitepaper the 
data is not real and is for illustration purposes only.  
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Figure 3 Bug Root Causes 

4.1.1  Specifications 
Specifications are a common root cause of bugs. Errors in 
the spec are likely to propagate into the RTL coding 
unless detected by spec reviewing. However, it may not 
be an error, and more of an ambiguity, that leads the spec 
reader, the designer or the verification engineer, to make 
a false assumption. With luck, the designer and the 
verification engineer will make different assumptions 
about what is the correct behavior, in which case there is 
good chance that the verification environment will expose 
the difference, and then the team has to arbitrate with the 
spec owner as to which is correct and hopefully amend 
and clarify it. This is a spec bug. However, it is also 
possible that both arrive at the same, potentially incorrect 
understanding, in which case the verification environment 
cannot detect the error and we have a ‘common-mode-
failure’. Unless specifications are executable, there is a 
manual and intellectual step to realize the spec into the 
implemented design and the corresponding verification 
environment.  

Further, specs have been known to change (don’t laugh!). 
Spec changes can be very costly and disruptive when 
following a standard waterfall approach for product 
development (historically typical for hardware 
development projects), but they are expected, anticipated 
and managed for those projects following an Agile 
development process. However, late spec changes can 
mean that functionality needs to be ‘bolted-on’ in some 
cases, which can lead to non-elegant coding, unless the 
designer chooses to refactor the code to take account of 
the new requirements. The latter is the ideal, but in 
practice not always achieved due to schedule pressure. 
This obviously leads us back to poor code health and the 
risk of the sort of bugs that arise from poor coding style.  

4.1.2  Structure and Interfaces 
Sophisticated hardware products these days are usually 
too complicated for any one individual to maintain a 
complete understanding of all functionality at any one 

time. So, the problems have to be broken down into 
logical units for both design and verification, and the 
interfaces between these logical units also define the 
interfaces between the people in the teams. Good 
interfaces are pivotal in building a good hierarchical 
design.  

Most complex designs employ more than one designer. 
Wherever the work needs to be partitioned between 
humans, the boundaries need to be clearly defined with 
well-defined interfaces. Most designs are partitioned to 
multiple depths of hierarchy to ensure that functionality 
can be encapsulated into humanly understandable chunks. 
Each partition and sub-partition must have a rigorously 
defined interface that both sides (usually different 
developers) fully understand. Not surprisingly, interface 
misunderstandings are a common source of bugs. If an 
interface definition is at all ambiguous, it is highly 
probable that different developers will make different 
assumptions. They will develop and test their unit or 
module in isolation finding no problems, but when 
integrated together, they may fail. The gross miss-
understandings should become apparent very quickly and 
are generally easily fixed, although in some cases might 
lead to significant rewrite once the interface ambiguities 
are resolved. More subtle errors might not be discovered 
until much later or need complex conditions to trigger 
them. 

4.1.3  Code Churn 
In common with software development, RTL code 
development tends to be a somewhat iterative process. It’s 
not usual to capture perfect code that never needs to be 
further updated. Code can churn for various reasons as 
follows. Each time the code is updated there is a risk of 
deteriorating code health and introduction of new bugs. 
There are four main causes of code churn: - 

• Missing features – the full set of features may not be 
captured in the first cast of the code, but 
incrementally added, and this can affect the elegance 
of the initial code if it wasn’t fully considered from 
the start. 

• PPA tuning – designers need to design for function 
and PPA, but sometimes function takes priority and 
code is subsequently iterated to achieve PPA targets. 
These performance changes may be disruptive and 
require a rethink of the micro-architecture or some re-
structuring of the design, and they can often increase 
code complexity as ‘clever tricks’ are applied that 
might be non-intuitive on first inspection. For 
example, re-pipelining optimizations where logic is 
moved from one side of a register to another in order 
to meet timing requirements or save logic. 
Sometimes multiple iterations occur to achieve the 
target, each time potentially deteriorating code health 
and increasing bug risk. 

• Bug fixing – some bugs may be simple to fix, without 
impacting code health. More complicated bug fixes 

Verification

Copy-Paste

Typos

Missing Code

Perfomance Tuning

Bug Fixing

Refactoring

Interfaces

Specifications Creating
Changing
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may require multiple lines of code or multiple 
modules to be updated which increases the risk or 
making a further mistake. Sometimes bug-fixes are 
temporary patches to the code, with the intention to 
revisit13 and clean up or refactor the code at a later 
date. Complex bug fixes can take several goes to get 
right and we find ourselves in a cycle of bug-fix upon 
bug-fix in an attempt to get a clean pass of 
verification. When this happens, you know that code 
health is deteriorating and that might cause a problem 
later on. In some cases, it is prudent to take stock and 
reassess the code and consider if refactoring or 
rewriting is going to be a better course in the long run.  

• Refactoring – is normally done as a bug-mitigation 
strategy. Cleaning up the code makes it more 
readable and maintainable and so should reduce the 
risk of bugs. Of course, sizable code re-writes will 
also increase the risk of introducing new bugs 
through lack of understanding of the intended 
behavior maybe, especially if the refactoring is being 
done by a different author.  

4.1.4  Typos and copy-paste 
For software and hardware developers, typos are the curse 
of code authoring. Of course most of the glaring typos are 
picked up by the HDL compiler, but it is so easy to miss 
a term in an expression through a lapse in concentration, 
or an interruption, or to miss-type a signal name by a 
single character (yet for it to still be a valid signal name 
so that code compiles despite this). It is also historically 
more common in hardware coding than software coding 
(where good practice is to reduce code duplication with 
functions) to copy-paste large chunks of code to replicate 
structures in the design. This is especially true when 
replicating logic for performance tuning, or when there is 
a behavioral structure that is similar but functionally 
independent from the original. These replicated structures 
can quickly get out of step if the linkage between them is 
not tracked. A code update for one structure could be 
accidently missed in its copy-pasted cousins. These errors 
can sometimes be difficult to pick up from eye-balling the 
code.  

These are human errors, but we hope that good peer 
reviewing, continuous integration (CI) testing, and basic 
verification will quickly pick these errors up. A good 
Integrated Development Environment (IDE) can help to 
minimize these simple errors during code authoring, but 
some will be missed. Of course, some escape only to be 
very troublesome much further down the line.  

 
13 Hopefully the author will leave a searchable “REVISIT” or similar 
string in the code.  

4.1.5  Verification Bugs 
It would be remiss not to discuss bugs in the verification 
environment since it is also a complex piece of 
development, oftentimes similar in complexity to the RTL 
Design. It also models the behaviors of the design in order 
to perform independent checking. Since the verification 
environment is also developed from an understanding or 
interpretation of the design specification, it is prone to 
similar errors which can lead to one of the following 
situations: - 

- False Positive: the test passes but fails to pick up an 
erroneous result or behavior in the design. 

- False Negative: the test fails but the design behavior 
is correct.  

The ‘false-negative’ is easier to detect since the test 
reports a failure and debug needs to occur. However, there 
is a risk that the wrong conclusion is reached. The 
verification environment may be assumed to be correct, 
and the design is then incorrectly adapted to make the 
(incorrect) test pass.  A new bug in introduced.  

The ‘false-positive’ is more worrying as an error in the 
design behavior has occurred but not been detected, so 
this could be a ‘bug-escape’. This can be down to several 
reasons. Either there is missing test coverage from the 
verification environment (and this is not seen by analysis 
of coverage data, e.g. there may be missing functional 
coverage), or the designers and the verification engineers 
have made a ‘common-mode’ assumption from their 
misinterpretation of the spec, i.e. they both got it wrong in 
the same direction. Hence the design contains a bug, and 
the verification environment contains the same bug.  

Because of this risk, it is important that the same level of 
scrutiny (independent if possible) is applied to the 
verification codebase as the RTL design code base.  

4.2  A word about coding style and 
readability 

Coding style and code quality can be a major factor that 
increases the risk of bugs. If code does not conform to 
organizational coding rules, it can quickly become hard to 
read and functionality becomes obfuscated. This is where 
knowledge and understanding can be lost. The designer 
himself may struggle to retain intimate knowledge of how 
the code works with the passage of time, let alone others 
being able to understand it should they be in the 
unfortunate position of having to fix someone else’s code 
at a later date. Some developers, in software and hardware 
development, find commenting and documenting source 
code to be tedious and an overhead that hinders 
momentum and productivity. It also becomes an overhead 
for maintenance. Out of date and incorrect comments are 
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likely worse than no comments as they are misleading, 
e.g. when an update is made to the code (to fix a bug or to 
implement a performance optimization) but not to the 
comments in the interest of expediency. Again, this is part 
of the design engineering craft. Good designers know how 
to use comments and documentation appropriately and 
how to write code that is clean, well-structured and where 
the behavior is implicit and easy to understand. 

Naming conventions aid code readability. Projects should 
at least follow the agreed project coding rules and naming 
standards, if not the organizational ones, especially if the 
project team spans the organization or needs flexibility to 
do so in the future. 

Coding rules need to be obeyed and checking needs to be 
automated using an HDL linting technology. Linting is a 
well-established software methodology to improve code 
quality, but also well established for HDL for many years 
now. Many of these tools provide out-of-the-box rulesets, 
or teams or organizations may develop their own custom 
rulesets.  

If a project team was to lose a key designer before the 
product is complete, their code might be considered to be 
abandoned. Another designer will need to pick up 
ownership of the code and be confident in understanding 
it so that they can change or develop the code further to 
fix bugs, add functions or optimizations. Oftentimes when 
code is hard to read, the adoption risk can be higher than 
a code re-write. A code re-write can seem to be expensive 
and disruptive, although in the long run it will likely save 
time and cost. 

Further, if a project is reusing a lot of code from a previous 
project, they may have a similar issue to the one above 
where the inherited code is less well understood or 
conforms to a different set of coding rules and styles. The 
original author may or may not be available to help. If said 
code needs to be modified and cannot be treated as an 
entirely reusable block (i.e. no changes at all are required), 
there is risk of introducing bugs through lack of perfect 
understanding of the original intent. Design teams need to 
assess the risk when reusing code in this way, and 
oftentimes although seemingly costly and inefficient, it is 
better to rewrite the functionality using the inherited code 
as a reference. This way the team knows that they can 
support the rewritten code and understand it to the same 
level as other units in the design.  

4.3  A word about Complexity 
Complexity can arise in RTL code for very good reasons. 
The architecture that is being implemented may be 
inherently complex, or the chosen micro-architecture 
might be necessarily complex in order to meet challenging 
PPA targets. After all, these things are the attributes that 
will differentiate the product from the competition. 

 
14 https://en.wikipedia.org/wiki/Cyclomatic_complexity  

However, complexity in the RTL code needs to be 
managed. Different RTL designers may have different 
personal styles of writing RTL code, some being very 
comfortable with a high degree of complexity in their 
code, others may be less so, and all could still be operating 
well within the project or organizational coding standards. 
Not all units, blocks or modules are equal. Some are 
purely structural and mainly consist of wiring to connect 
up other sub-blocks. These modules can be very repetitive 
and generally void of logic. Others might implement 
complex state-machines or algorithms. Some designers 
prefer to control the synthesis tools very tightly with 
explicit gate-level coding. Others prefer to code at a more 
behavioral level and leave the synthesis tools to arrive at 
the optimal solution. In general, the behavioral code is 
easier to read than the gate-level coding style, but 
sometimes designers need to code at this low level in 
order to constrain the implementation to meet their exact 
requirements.  

Additionally, clock-gating and low-power mechanisms 
can add significant complexity to designs and may be non-
trivial to understand when reviewing the code.  

There is no commonly agreed standard way to measure 
complexity in RTL code. Software developers have been 
using lines-of-code, McCabe cyclomatic-complexity14 or 
code indentation-complexity15 to get some measure of 
code complexity, but these do not always work so well for 
HDLs. A search of the internet will find a handful of tools 
that claim to offer HDL complexity analysis, often based 
on McCabe cyclomatic-complexity. If you think about 
complexity for logic circuits, you might also consider how 
deep and wide the logic paths are between registers (the 
logic-cone-of-influence) i.e. how many terms are 
involved in determining the input to a register.  

Designers typically rely on experience and engineering 
judgement to estimate the complexity of RTL code, and 
may refactor code to reduce risk when uneasy about their 
ability to understand and maintain the code now or in the 
future.  

Complex RTL code can (but does not always) lead to 
complex verification environments, and the propensity to 
make coding errors then exists in both the RTL code and 
the verification code.  

Clearly, complexity increases the risk of 
bugs, and the bugs themselves might be 

subtle or complex.  
They might not be triggered immediately, and then be 
difficult to debug, especially if the outcome from the bug 
does not become observable until a long time after the 
trigger point.  

 

15 https://github.com/adamtornhill/indent-complexity-proxy  
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5  Strategies to avoid bugs 
How can design teams minimize the number of bugs that 
get coded into the design? As we have already asserted 
earlier, there is no such thing as a bug-free design, but 
there are classes of bugs that are extremely hard to find – 
the ‘unknown-unknowns’. We can’t account for them in 
test planning, because we don’t know what they are. We 
don’t have coverage goals to reassure ourselves that these 
cases have been both stimulated and checked, because we 
don’t know what they are. We ‘hope’ that comprehensive 
random verification environments will eventually flush 
them out. We can check to ensure that our random 
constraints do not over-constrain the stimulus and that 
sufficient16 ‘assurance-cycles’ have been run that the code 
appears to be stable. We can review and re-review 
everything in the verification environment and brainstorm 
the question “what else can we do?”. We can adopt an 
approach of continuous improvement. When a bug is 
found, no matter how it is found, we need to ask the 
question “why was this not found earlier?”. We need to 
review the testing around this space to see if it can be 
enhanced to increase the probability of triggering this bug 
sooner and with higher frequency.  We also want to check 
for the presence of any sibling bugs that may be lurking 
and use this hindsight to consider if other areas of 
verification can be improved.  

It’s not enough to endlessly improve the 
verification environment (but we are 

going to do that regardless), and we need 
to look at how the design can be codified 
in a way that minimizes bugs in the first 

place, on the premise that not all bugs can 
be found.  

5.1  Reviewing 
Good design reviewing practices can stop a lot of bugs 
from ever even making it to the first simulation cycle. It’s 
not fully reliable, but it has been shown to catch serious 
bugs so that they never ‘pupate’ into ‘flying’ bugs. They 
are eliminated at birth. This often means that these coding 
errors are not recorded or recognized as bugs, it’s just a 
part of the code-writing process. Code writers can review 
their own code, and most will do so of course. Peer 
reviewing is more powerful as a second set of eyes will 
often pick up things that the code writer is blind to.  A 
good hardware development workflow will always 
include a rigorous code reviewing process.  

 
16 You have to analytically decide what sufficient means! 
17 hidden from the programmer’s spec 

5.2  Design Risk Mitigation Strategies 
As we discussed earlier, oftentimes complexity is 
necessary and unavoidable in order to achieve the 
performance and functional targets of the design. 
Sometimes significantly complex behaviors can be added 
to achieve marginal performance gains. The aggregation 
of all such gains can make the difference between hitting 
the targets or not, but it may be possible to disable 
individual optimizations in software, without crippling 
the overall performance of the device. Designers often 
practice this by adding hidden17 feature downgrade 
configuration bits, which can be enabled should a 
crippling bug arise in the optimization logic. These 
programmer bits can be ‘get-out-of-jail-free’ bits should 
this scenario arise as it allows the device to still function 
thanks to a simple software patch, or at least buy some 
time until the revised and fixed hardware is available. The 
trick is to recognize when it is wise to add these bits. 
Clearly if it was necessary to enable all such bits, the 
resultant performance might no longer be within 
acceptable limits. Beware however, that adding logic to 
enable or disable behaviors extends the verification space 
and introduces some marginal risk that the added logic 
itself contains bugs. Further, be careful of any 
interdependencies between these bits that might manifest 
as unanticipated behaviors.  

5.3  Designer Assertions 
Use of assertions (typically SVA18) for hardware coding 
is now common practice in the same way it has been for 
software to catch unintended behaviors at the point of 
failure, rather than later once (or if) the error has 
propagated into an observable failure. Designers are well 
placed to codify assertions as they codify the RTL code. 
They are built-in checkers that are there only for the 
purposes of verification. In general assertions are not 
added as synthesizable code that end up being present in 
final silicon (though in some circumstances they could be, 
or it may be desirable to include them in the FPGA 
verification environment for example). 

The value of assertions written by the designers is that 
they can be used to capture ‘intent’.  

Actually, the very act of writing 
assertions, which is codifying behavioral 
assumptions that might otherwise have 
remained in the designer’s head, can 

catch bugs before they ever really come 
into existence.  

18 https://www.verificationguide.com/p/systemverilog-assertions.html  
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It’s that additional intellectual step, where the designer 
might think “Oh, hang on, that doesn’t quite work does 
it!”, leading to better code quality and less bugs before we 
start. The assertions then also act as a really concise 
documentation of how the function is intended to work, 
and they are forever there for all verification cycles as 
guardian checkers that will pick up behavioral 
discrepancies and lead the development team straight to 
the root of the problem with minimal debug effort. Of 
course, as is the case with the verification environment in 
general, the error could equally be in the assertion and not 
the RTL code. But we would hope that those functional 
differences between code and assertion will become 
observable and can then be debugged and corrected. The 
risk of ‘common-mode’ failure still exists, however. 

Further value can be gained from assertions when formal 
verification tools are used. If the designer assertions are 
essentially describing properties of the design, it may be 
that these properties can be formally explored and even 
proven. Applying formal in this way acting on smaller 
units of design can be very successful. Proven properties 
can give a much higher level of assurance that the function 
is correct under all possible circumstances (or at least hold 
true for a convincing number of cycles – a ‘bounded 
proof’), and if the RTL is built up on proven sub-
structures, we essentially have a ‘correct-by-construction’ 
approach to building the full design.   

5.4  DevOps approaches from the 
software development world 

DevOps was first coined in 2009 and is born out of the 
earlier movements of Lean and Agile. There has been a 
largescale adoption of the ‘DevOps’ approach for 
software development and deployment in recent years, 
and pretty much any grown-up software company that is 
provisioning a software platform to users, will be doing 
so with a DevOps approach. If you want a good 
introduction to DevOps try Ref [1], though this is a much-
documented area. Any major social media platform you 
can think of, Cloud services, on-line banking platforms, 
etc. etc. will be following the DevOps methods out of 
necessity, since they are developing, delivering and 
operating business-critical platforms. They cannot afford 
to make mistakes when deploying new features to the 
platform, that might result in a service outage for hours, 
or days, or longer while their developers are working to 
issue a patch and restore the service. Through DevOps, 
product owners, developers, QA, IT operations, and 
security specialists work together, not only to help each 
other, but to ensure that the overall organization succeeds.  

 
19 https://jenkins.io  
20 https://about.gitlab.com  

They enable a fast flow of planned work 
into production, performing tens, 

hundreds or thousands of code-deploys 
per day, while achieving world-class 
stability, reliability, availability and 

security. This is why DevOps is mission 
critical.  

Hardware development teams might consider that they are 
all about ‘Dev’ and less so about ‘Ops’. However, there 
are elements of DevOps that can be applied in the 
hardware development space. I won’t attempt to explore 
all ideas here but some examples from Ref [1] include: - 

• Continuous Integration 
• Pair Programming 
• Blame-free Retrospectives 
• Trunk-based development 
• Code Refactoring built into the workflow 
• Swarming on defects 
• Test-driven code development 
• Telemetry (operational analytics) 

5.4.1  Continuous Integration 
Central to DevOps is the concept of CICD (Continuous 
Integration/Continuous Delivery (or Deployment). This is 
where development teams build and operate a CICD 
pipeline that starts with the commit of changes, which are 
then automatically tested by continuous integration suites, 
and then automatically built and deployed to the target 
platform usually through a pipeline of deployment 
environments such as development, test, staging and 
production.  

Continuous Integration (CI) is a methodology borrowed 
from software development and commonly adopted for 
hardware design and verification teams. It says that we 
continuously build, test, and integrate our code and 
environments, increasing the frequency of integrating and 
testing from periodic to continuous. This helps to reduce 
the amount of broken code that gets checked-in and can 
be thought of as an ‘trunk is always-working’ model. The 
trick is how to decide what tests from the entirety of the 
testing environment should be selected for CI testing to 
give sufficient coverage that the code is essentially 
working, leaving the deeper ongoing exploratory testing 
to the main regression and soak testing environments.  

There are opensource (e.g. Jenkins19) and commercially 
supported CI systems available. CI is often a component 
of more comprehensive CICD workflows such as 
Gitlab20, or Bitbucket21.  

21 https://bitbucket.org/product/  
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5.4.2  Automated Code Reviewing (Pair-
programming) 

Many software development teams are adopting the Agile 
concept of pair-programming22 practices and automating 
this process using one of the available code review 
solutions such as Gerrit23 or Gitlab. Gerrit is a GIT24 
server that provides code review and access controls on 
the GIT repository. With Gerrit, when a developer makes 
a change, it is sent to this store of pending changes, where 
other developers can review, discuss and approve the 
change. After enough reviewers grant their approval, the 
change becomes an official part of the codebase. In 
addition to this store of pending changes, Gerrit captures 
notes and comments about each change. These features 
allow developers to review changes at their convenience, 
or when conversations about a change can’t happen face 
to face. They also help to create a record of the 
conversation around a given change, which can provide a 
history of when a change was made and why. 

 
Figure 4 Gerrit workflow25 

This workflow enforces a much higher level of scrutiny 
and ensures that knowledge about the code and how it 
works is shared with at least one other person, preferably 
more. It also ensures that all coders are aligning to a 
common coding standard and quality by enforcing this 
cross-checking. Of course, there is an overhead to this, in 
the additional time and rigor required to commit code, and 
this may be in conflict with the need for expediency and 
delivery pressure. At the end of the day, it’s a trade-off 
between more time taken on high quality coding, against 
potential time lost and delay from complex debugging and 
bug-fixing later on, and ultimately on final product 
quality.  

 
22 https://en.wikipedia.org/wiki/Pair_programming  
23 https://www.gerritcodereview.com/  
24 https://git-scm.com  

5.4.3  Code Refactoring and Technical Debt 
Technical debt26 (also known as design debt or code debt) 
is a concept in software development that reflects the 
implied cost of additional rework caused by choosing an 
easy (limited) solution now instead of using a better 
approach that would take longer. 

Technical debt can also easily accrue in hardware 
development, as quick fixes or sub-optimal coding may 
be applied to make fast progress towards critical project 
milestones, with a view that this can be cleaned up at a 
later date. Oftentimes it is done knowingly with a “revisit” 
comment in the code that can be parsed for with scripting 
later.  

I’ve taken the following good summary of refactoring 
from Wikipedia27:- 

“Code refactoring is the process of restructuring existing 
computer code—changing the factoring—without 
changing its external behavior. Refactoring is intended to 
improve nonfunctional attributes of the software. 
Advantages include improved code readability and 
reduced complexity; these can improve source-code 
maintainability and create a more expressive internal 
architecture or object model to improve extensibility. 

If done well, code refactoring may help software 
developers discover and fix hidden or dormant bugs or 
vulnerabilities in the system by simplifying the underlying 
logic and eliminating unnecessary levels of complexity. If 
done poorly it may fail the requirement that external 
functionality not be changed, introduce new bugs, or 
both.” 

Refactoring is just as applicable to hardware development 
as software development and is a best practice that design 
teams should adopt, despite this sometimes being in 
conflict with schedule pressures, since it may pay off 
significantly in the longer term, due to higher quality and 
better readability and maintainability of the codebase. 
Refactoring needs to be planned into the development 
schedule, whether waterfall or agile. According to Ref [1], 
software development teams are recommended to plan in 
at least 20% of time for code refactoring. There is no 
reason why this guideline would not be fully applicable to 
hardware code development.  

25 https://www.gerritcodereview.com/intro-how-gerrit-works.html  
26 https://en.wikipedia.org/wiki/Technical_debt  
27 https://en.wikipedia.org/wiki/Code_refactoring  
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6  How data and analytics 
can help? 

6.1  Coverage Analytics 
Code Coverage and Functional Coverage give indications 
of progress for verification efforts. Both are required and 
both need to be tracked with regular analysis and review 
of coverage gaps, leading to ongoing refinements in the 
verification environment. Branch and line code coverage 
simply tells us that lines of Verilog have been visited 
during testing, whereas expression or FSM coverage can 
give more detailed insights into how expressions have 
been triggered. This usually requires some manual review 
to understand what is reachable (and therefore should be 
hit) versus what is unreachable and will never be hit. In 
this sense there is a notion of completeness about code 
coverage in that every line of RTL code is there for a 
purpose, and should be executed at least once, unless the 
RTL code is in fact redundant. If reviewing confirms that 
this is redundant code, then it should be removed, as it has 
no purpose.  Functional coverage does not have the same 
notion of completeness. Full coverage of the implemented 
coverage points can be achieved, but how do we know that 
our functional coverage model is complete? We don’t! It’s 
a best effort based on a process of brainstorming, 
reviewing, feedback and iterative refinement.  

However, coverage is typically the set of metrics that gets 
the most attention in terms of assessing verification 
progress and signing off completion.  

Finally, it is most important to remember 
the following: - 

Covered != Verified 

Sadly, meeting coverage goals alone does not guarantee 
an absence of bugs.  

6.2  Bug Analytics 
Bug tracking and analytics is a good way to understand 
verification progress. It requires some rigor in the 
consistent capture of bug data, which is sometimes not the 
highest priority when making a rapid fix and making 
progress is imperative. But bug data is a rich measure of 
the state of the design and the value of the verification 
work that is being done. It is important to be aware that a 
lack of finding bugs with the current environment, does 
not necessarily indicate victory, even though coverage 
targets may have been met. It may be simply that the 
current verification environment has saturated, it is no 
longer capable of finding further bugs, and we do not 
know if there remain unexplored sequences where further 
bugs may lurk. So, saturation is really a checkpoint where 
the engineering team need to scrub the verification 

environment to consider if it can be further extended. At 
the end of the day, engineering experience and judgement 
tell us if all conceivable cases are being explored or not, 
and if some are not, what the risk or likelihood is that 
critical bugs are being missed.  

This plateauing of the cumulative bug discovery curve 
over time gives a visual indication of these verification 
saturation points.  

 
Figure 5 Progression of the cumulative bug curve 

 

Note that the cumulative bug curve might not be a smooth 
ideal progression. There may several false saturation 
points on the way where the curve appears to be flattening 
off, but then further changes to the RTL codebase, or 
transitions to other verification environments might 
trigger further phases of active bug discovery. 

Better still is to correlate the verification effort (as cycles, 
or CPU hours for example), with the bug discovery rate. 
This will help us to identify situations where bugs are no 
longer being discovered despite significant ongoing 
verification effort such as continued soak testing. Further 
to this, if we correlate source-code commits for both the 
RTL and the verification environment, we can reason 
about why we might be running (and consuming 
resources) when bugs are not being found, and the RTL 
and verification code is static. We are in a “saturation 
zone” where further verification effort is no longer 
yielding bugs, and we have to decide when to stop. In a 
world of constrained-random testing methodologies, we 
can continue to run marginally different cycles infinitely. 
This poses some questions for the hardware development 
team. 

1. What is the magic target for bug-free and change-free 
verification that we are happy to sign-off against 
when we achieve it?  

2. If a bug is subsequently discovered deep into this 
saturation zone, will we need to revise the target (and 
if so by how much?) and reset the release testing 
clock? 
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Figure 6 Bug discovery correlated with effort and code change 

6.3  Bug Prediction 
How great would it be if we knew precisely how many 
bugs our design contains and can measure our bug 
discovery progress against this? 

 Imagine: “I’ve got 23 bugs left to find 
and when I have found them, we are all 

done!”.  
What would an imaginary bug prediction curve look like 
and how would we reason about any gaps between 
predicted and actual?  

 
Figure 7 Imaginary Bug Prediction Curve 

However, there have been some efforts, perhaps not that 
widely known, to make sensible predictions of how many 
bugs a design will contain. Again, these studies are 
typically within the software development domain. Some 
ideas28 have been presented several years ago that show 
good results for hardware bug curve predictions that use 
the Rayleigh Distribution Model. Can prediction models 
help us to at least approximate our bug projections to give 
some guidance on how we are performing in a data-driven 
way? I’m not saying there are perfect solutions here, but 
it may warrant some further research, especially in a 
world where Machine Learning is proliferating into all 
sorts of complex prediction problems. Given a clean bugs-

 
28 
https://www.testandverification.com/DVClub/24_Jan_2011/Greg_Smit
h.pdf  

dataset for a comparable design, can we experiment with 
ML algorithms (such as Decision Trees, Naïve Bayes, 
Artificial Neural Networks (ANNs) for example) and 
some basic feature engineering to determine which bug 
and design metrics are most important and give the best 
prediction results? I’m not recommending a specific 
solution here, as that would be a whole whitepaper in 
itself, but it seems like a rich area for data science. The 
success or failure of this will be very dependent on how 
much data is being consistently collected for bugs. A good 
bug schema is needed that will ensure data collection goes 
beyond simply describing the bug itself. Bug 
classification details, impact and root causes will be 
needed. Also, data related to code churn, code size, 
complexity measures etc. will be important factors. A 
quick web search will reveal several research studies of 
this, again mostly in the software development domain. 
But there is no reason why these techniques could not map 
to hardware development with a little effort. 

6.4  Codebase Analytics 
There is a rich dataset that is less often analyzed for RTL 
design projects and this is the revision control system 
data, GIT for example. Version control practices can vary 
from team to team but if used in a consistent way by the 
development team, the GIT repository can give insights 
into the health of our codebase, e.g. whereabouts are the 
problem areas in the design or the verification 
environment. This would be indicated either by size 
and/or complexity of the code or commit rates that 
indicate code churn hotspots. Understanding where those 
hotspots are might be beneficial when considering where 
to focus verification efforts or when to consider any code 
refactoring. This is another example of where methods 
used by software developers could be used for hardware 
developers. 

There is an excellent book that covers this topic, Ref [2], 
with supporting website and analytics tooling available. 
The title points to the use of forensic techniques to 
understand defects and bad design in programs. The 
Author (Adam Tornhill) introduces the idea of ‘hotspots’ 
that represent complex parts of the code base that have 
changed quickly because frequent changes to complex 
code usually indicate declining quality. The richness of 
the GIT data is that it contains the evolution of the 
codebase over time. In the book and the website, he shows 
some powerful interactive visualizations of hot-spots, that 
make it easy to identify areas of concern and analyze how 
they change over time. A complexity metric is required to 
do this (recall the discussion on complexity earlier), and 
for software developers there are several options such as 
simply counting lines of code (LOCs - comments and 
blank lines), or McCabe cyclomatic complexity. 
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However, Tornhill recommends the use of a simpler code 
indentation metric which works well when source code is 
properly structured and in general the level of indents is a 
good indicator of how the code is constructed and the 
number of decision levels that exist. For Verilog or 
VHDL, this complexity metric may not be appropriate 
however, especially given the variation between simple 
structural modules, that are mostly wiring for example, 
versus more complex modules that might encode 
algorithms or state machines, and also behavioural coding 
styles versus instantiated gates coding styles. 
Nonetheless, simple LOC measures correlated with 
commit data is still likely to be a highly useful indicator 
of areas of concern. If you have a viable complexity 
metric you can then track and visualise how that 
complexity changes over time, identifying situations 
where complexity is growing to a level of concern, that 
might suggest some code refactoring is needed, and then 
how that looks after the refactoring. Further, it may be 
possible to identify unknown linkages or couplings in the 
codebase. Commits that tend to occur in groups where the 
coupling between files is not necessarily obvious is giving 
us further insights into how the codebase is structured that 
will help us to understand where bugs and other defects 
might occur.  

 
Figure 8 Screenshot of Hotspot visualization29 taken from codescene 

The above screenshot is taken from Tornhill’s website30 
and shows an interactive visualisation of hotspot analysis. 
This view shows the relative complexity of each code 
module (in this case C) by size, and the commit rate by 
colour – the darker cells indicating highest commit rate. 
The viz can also be flipped to show code age, defects and 
refactoring targets. The darker cells above are clearly the 
obvious targets to consider for refactoring.  

Tornhill goes on to examine other aspects of the GIT data 
that can be of interest and relevance to hardware 
development. He refers to social aspects of code. For 

 
29 
https://codescene.io/projects/171/jobs/15343/results/code/hotspots/syst
em-map  

example, the GIT repository contains interesting data on 
who has made commits, this being the development team 
in general. It’s useful to understand what code is owned 
by which developers, how this changed over time, or to 
identify ‘abandoned code’ where the main developer has 
left the team or the organisation. In this case the team need 
to consider how the code will be re-adopted and then if 
the code is in a state where it can be done so with 
confidence or needs to be recoded in order to be fully 
understood.  

Tornhill’s work also considers the codebase from an 
architecture and a project management point of view. See 
Tornhill’s blog31 for further details.  

7  Conclusion 
While hardware developers think differently about how 
they develop their product to software developers, there 
are many overlaps. After all, both are developing code to 
implement their products. Hardware developers being 
confined to Verilog, SystemVerilog or VHDL in the main, 
while software developers have many rich software 
languages to choose from these days. The stakes for both 
are equally high. A critical hardware bug might incur 
significant hardware re-work costs. If impactful bugs 
make it into the field, products may be degraded in 
function or performance due to impactful workarounds, or 
even recalled in extreme circumstances. Building silicon 
and building hardware products is an expensive business. 
However, developing and operating complex software 
platforms with vast numbers of users is equally expensive 
and damaging when the platform is unavailable or 
financial damage has been wrought by a critical security 
issue for example. The software development world has 
embraced the principles of Agile and DevOps to ensure 
that such systems can be operated with great reliability 
and can be updated and deployed to users quickly and 
silently, and rapidly rolled-back if things go wrong. Some 
of this learning from the software development world can 
be applied to the hardware development world (excluding 
rapid roll-back maybe!). 

It is also important to understand the nature of bugs and 
the scenarios that can lead to them. What are the origins 
of bugs and what strategies can be applied to minimize 
them?  

Data analytics is a useful toolbox that is available to us 
when dealing with complex hardware or software product 
developments. Getting to grips with the data so that it can 
be used effectively can be a significant effort. Datasets 
needs to be clean and complete. Good visualizations are 
incredibly powerful for telling the story of the data and 
communicating insights quickly. You should never 

30 Permission kindly granted by Adam Tornhill 
31 https://empear.com/blog/codescene-prioritize-technical-debt-in-react/ 
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underestimate the power of the human brain for pattern 
recognition when data is presented in a visual form rather 
than rows and columns of numbers. Machine Learning is 
becoming a powerful tool for building useful predictions 
from that data and using this learning to reduce 
development efforts and increase productivity.  
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