

Copyright © 2020 Acuerdo Consulting and Valytic Consulting. All rights reserved.

ACUERDO
acuerdo

Joe Convey
+44 7850 007341
r1raider@gmail.com

consultancy services

1

On

The Cost of Bugs,
Or

Understanding the total costs of finding, and of not finding,
hardware bugs

Bryan Dickman, Valytic Consulting Limited

Joe Convey, Acuerdo Limited

Abstract

Whether you are developing a hardware product or a
software product or both, understanding bugs, what
causes them, how to avoid them, the cost of finding them
and the cost of not finding them, becomes one of the
biggest drivers that shape how you develop products.
Understanding all aspects of this will help you to reason
about the balance between delivered product quality and
ROI.

1 Introduction

We are writing this article from the perspective of IP
hardware product development where bugs drive a large
part of the development cost and getting it wrong can have
a big impact. How do teams deliver on time, with
functionality, performance and integrity and what are the
costs involved in ensuring an absence of bugs and the
delivery of high-quality products? Conversely, what are
the impact costs when bugs are missed and discovered
post release, incurring significant rework costs and other
hidden costs such as lost opportunities or lost sales? These
costs can also be passed down the customer/consumer
food chain and eventually impact the end-users. Bugs can
drive up development costs and subsequently drive down
ROI and customer confidence.

Much has been written about the cost of bugs from a
software perspective, but the true cost of hardware bugs is
less well documented or understood.

Often the understanding of the impact scope is limited to
the engineering rework costs of fixing bugs. This cost is
highly dependent on when bugs are found. Finding and
fixing bugs is part of the normal development flow for
hardware designs, with bugs found later in the
development cycle being more disruptive and more costly
to fix. Bugs that are discovered after product release are
even more costly, and their impact on software and
deployed hardware products can be significantly more
wide reaching. The true cost of bugs extends to other
considerations such as the lost opportunity cost when

Figure 1: The ROI balance of finding bugs and not finding bugs

The Cost of Bugs

Copyright © 2020 Acuerdo Consulting and Valytic Consulting. All rights reserved.

ACUERDO
acuerdo

Joe Convey
+44 7850 007341
r1raider@gmail.com

consultancy services

2

resources are diverted away from new product
development activities, reputational damage and business
impacts and the cost of really understanding the root
causes and implementing appropriate improvement
measures to prevent future similar bugs.

Everyone knows about Intel’s infamous FDIV bug from
the 1990’s which at the time was probably the most
expensive bug in history. In December 1994,
Intel recalled the defective processors.

In January 1995, Intel announced "a pre-
tax charge of $475 million against
earnings, ostensibly the total cost

associated with replacement of the flawed
processors." 1

And yet the root cause of this colossally expensive error
was a simple engineering error that had been overlooked
by the developers.

More recently the security
vulnerabilities known as
Spectre2 and Meltdown3
have emerged. These
vulnerabilities were
found and published by
Google (the Google

Project Zero4 team) in an effort to demonstrate a new class
of security vulnerabilities unique to advanced processors
that implement speculative execution of out or order
instruction streams. Many processors from multiple
vendors were afflicted with these vulnerabilities and there
has been much written in the media with much rhetoric
about this being one of the worst bugs ever found.

So much so, that there is even well recognized branding
and iconography for the 2 classes of problem, the Spectre
ghost and the Meltdown shield!

Whether it is classified as a bug or just an unfortunate
‘feature’ of the design doesn’t really matter. The fact is
that the GPZ team identified a set of vulnerabilities caused
by the hardware design, and exploitable by malicious code
to compromise these assumed security barriers provided
by the hardware. This is a huge deal.

Meltdown was dubbed by Daniel Gruss,
one of the researchers that discovered the

1 https://en.wikipedia.org/wiki/Pentium_FDIV_bug
2 https://spectreattack.com/spectre.pdf
3 https://meltdownattack.com
4 https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html
5 https://www.theguardian.com/technology/2018/jan/04/meltdown-
spectre-worst-cpu-bugs-ever-found-affect-computers-intel-processors-
security-flaw

vulnerability, as “probably one of the
worst CPU bugs ever found.” 5

These bugs really made global headline news6 7 8 9 and are
still much talked about today. It is hard to estimate the full
cost impact of these bugs and it is likely to have surpassed
the Intel FDIV bug.

Product development teams need to be able to reason
about the investments they make in workflows and
methodologies. Businesses need to be able to reason about
the cost of developing new products and the impact cost
to the business of getting it wrong. Customers of IP
afflicted with critical bugs may suffer even greater
financial damages when products reach end users
resulting in costly product updates or recalls.

Bugs can have serious financial impacts.
Understanding these impacts is

fundamental to investment decision
making for avoidance and mitigation.

This article follows on from ‘On the Origin of Bugs’10
which discusses ‘where bugs come from and strategies to
avoid them’. Following on from this we explore the costs
involved in finding bugs in terms of engineering
investments, and then explore the costs of not finding
bugs in terms of the impact costs.

1.1 Understanding Bugs
The Origin of Bugs paper discusses this topic at length
from a hardware development perspective in terms of
classification and characterization of bug types.

1.2 Living with Bugs
No design can ever be bug-free. Verification is an NP-
Hard11 problem, i.e. there is no perfect solution. No
‘silver-bullet’!

All complex designs contain bugs, without
exception.

How do you design a complex hardware IP such as a
processor and fully verify it? We mean 100% verified,

6 https://www.theguardian.com/technology/2018/jan/04/meltdown-
spectre-worst-cpu-bugs-ever-found-affect-computers-intel-processors-
security-flaw
7 https://money.cnn.com/2018/01/03/technology/computer-chip-flaw-
security/index.html
8 https://www.ft.com/content/0052e072-f13e-11e7-ac08-07c3086a2625
9 https://www.bbc.co.uk/news/technology-42561169
10 https://www.valytic.co.uk/whitepapers
11 https://en.wikipedia.org/wiki/NP-hardness

The Cost of Bugs

Copyright © 2020 Acuerdo Consulting and Valytic Consulting. All rights reserved.

ACUERDO
acuerdo

Joe Convey
+44 7850 007341
r1raider@gmail.com

consultancy services

3

whatever that means! Hardware is getting more complex
and bugs are getting correspondingly more complex.

Verification is a resource-limited ‘quest’
to find as many bugs as possible before

shipping.
Of course, this leaves the remaining bugs that will likely
be present in the shipped products (the unknown-
unknowns12), and we ‘hope’ that should they emerge, they
are not impactful and/or can be satisfactorily worked
around in the field.

1.3 Avoiding Bugs
How can design teams minimize the number of bugs that
get coded into the design? As we have already asserted
earlier, there is no such thing as a bug-free design, but
there are classes of bugs that are extremely hard to find.
We can’t account for them in test planning, because we
don’t know what they are. We don’t have coverage goals
to reassure ourselves that these cases have been both
stimulated and checked, because we don’t know what they
are. We ‘hope’ that comprehensive random verification
environments will eventually flush them out. We can
check to ensure that our random constraints do not over-
constrain the stimulus and that sufficient13 ‘assurance-
cycles’ have been run that the code appears to be stable.
We can review and re-review everything in the
verification environment and brainstorm the question
“what else can we do?”. We can adopt an approach of
continuous improvement. When a bug is found, no matter
how it is found, we need to ask the question “why was this
not found earlier?”. We need to review the testing around
this space to see if it can be enhanced to increase the
probability of triggering this bug sooner and with higher
frequency. We also want to check for the presence of any
sibling bugs that may be lurking and use this hindsight to
consider if other areas of verification can be improved.

It’s not enough to endlessly improve the
verification environment (but we are

going to do that regardless), and we need
to look at how the design can be codified
in a way that minimizes bugs in the first

place, on the premise that not all bugs can
be found.

That is to say, it’s as much a design methodology and
design practices consideration as a verification concern.
The ‘Origin of Bugs’ paper expands on bug avoidance
strategies in more detail.

12 https://en.wikipedia.org/wiki/There_are_known_knowns
13 You have to analytically decide what sufficient means!

2 The Cost of finding Bugs
What does it cost to develop IP hardware products that
meet the product quality objectives?

How much does it cost to verify a product
and find all of the bugs before you release

the product?
What investments are necessary and what are the
operational costs?

Figure 2: Cost of Business (fake data)14

2.1 People Investment
Let’s start with the people investment. After all, the
people investment is going to be the dominant cost, more
than the Engineering Platform and the EDA tools required
to perform product development work. And businesses do
need to ‘invest’ in staff, because hiring is a costly activity,
and at the end of the day, the success of the products
comes down to the quality of the staff; how well trained
they are; how experienced they are and how innovative
they are; how well equipped they are with the ‘best-in-
class’ tools and resources to do their jobs.

Engineers love to solve challenging problems, innovate,
build ‘cool’ things, be experts and craftsmen, have access
to the latest and best-in-class platforms and tools and work
with teams of talented colleagues. They also like to get
rewarded well, recognized for their achievements, achieve
kudos, and engage with the wider industry to keep abreast
of latest technologies and developments by participating
in industry-wide and academic events from time to time.
They have career aspirations and ambitions. They need to
feel happy at work.

When these things are persistently not there, their
engagement with the work and the business may falter and
they may move on, because they are lucky to be in an
industry where there is strong demand for their skills and

14 Please excuse our 3D Pie Chart ;-) http://www.getnerdyhr.com/3d-
pie-charts-are-evil/

The Cost of Bugs

Copyright © 2020 Acuerdo Consulting and Valytic Consulting. All rights reserved.

ACUERDO
acuerdo

Joe Convey
+44 7850 007341
r1raider@gmail.com

consultancy services

4

their talent. That’s why HR teams talk about ‘talent
acquisition’ and ‘talent development’. Spending too much
engineering time dealing with critical bugs on legacy
products can diminish engagement if it means missing out
on development opportunities and getting stuck in a cycle
of never-ending rework, which can be demotivating. That
said, there are plenty of innovation opportunities when it
comes to complex problem solving around design and
verification methodologies. How to build better
workflows and use smarter tools that will avoid future
critical bugs, avoid costly rework, and enable engineering
resources to be deployed towards making more ‘cool’
products sooner, that make the business even more
successful.

It is critically important to hire and retain
talent.

Talented engineers want and expect to have the best
available tools, platforms and availability to support them
in the quest to build great revenue earning products. An
interesting challenge for any business developing
complex products that consume costly tools and resources
is how to educate engineering teams to be cost-conscious
and use the available resources sparingly and effectively,
and to understand and value the cost of providing those
resources. Of course, engineering understand cost, but
providing the teams with clear data showing the
relationship between the cost of providing the engineering
platform and the process of designing IP can create
positive perspectives on how to create cost efficiencies;

“Wow, did we really spend that much?
Surely we can do something about that by

improving xyz”?
How do you encourage innovations in methodologies and
deployment of tools, at a cost profile that fits the
company’s business plans and provides engineering best
in class facilities?

Creating this commercial awareness in engineering teams
is incredibly worthwhile as it makes partnership with
other parts of the business responsible for funding and
buying the resources much easier.

Having engineering as a willing partner also makes a
difference to the success of tool evaluations and
subsequent negotiations with vendors. Creating a culture
of partnership that transcends internal barriers but also
extends to the company’s EDA and IT suppliers is really
valuable, as it encourages vendors to become “partners”
working with engineering in a joint effort to confront the
technical challenges involved in a process like IP
verification and debug.

2.2 Engineering Platform Investment
The Engineering Platform refers to the entire stack of
infrastructure, applications, environments, tools and

automation layers that a business may provision and
operate for their engineering teams. The platform is the
factory that enables product development teams to do
their work and develop products. It is one of the two
biggest product development cost overheads (the first
being people of course) and is a massive investment for
developers of complex IP products such as Processors,
GPUs, SoCs and other semiconductor componentry.

The Engineering Platform may comprise a huge
investment in either on-premises (let’s use the ‘on-prem’
abbreviation) or off-prem (cloud) compute and storage,
specialist hardware acceleration technologies such as
emulators or FPGA farms, and often a similarly huge
investment in Electronic Design Automation (EDA)
technologies that consume this compute capacity. We will
characterize the Engineering Platform as a hierarchy or
stack of capabilities that as a whole deliver the necessary
production engineering capabilities that the product
development teams consume.

Figure 3: The Engineering Platform

This compute capability is required to crunch through vast
volumes of product development work.

Typically, >80% of this compute resource
is consumed by verification activities such

as Verilog simulation/emulation.
Over the last two decades the industry has seen the
compute requirement for Verilog simulation grow by
several orders of magnitude and the compute
infrastructures have scaled up accordingly. For complex
IP products such as processors, most of this simulation
consumption is taken up by constrained-random
verification strategies where the ability to consume cycles
is open-ended. Product teams struggle to define
meaningful targets for constrained-random soak testing
and will therefore tend to consume whatever compute
resources and tool licenses are available to them. More
cycles means more confidence, and this philosophy is
reinforced every time a late bug is discovered deep into
soak testing cycles. However, unfettered access to
compute cycles can lead to complacency about the

The Cost of Bugs

Copyright © 2020 Acuerdo Consulting and Valytic Consulting. All rights reserved.

ACUERDO
acuerdo

Joe Convey
+44 7850 007341
r1raider@gmail.com

consultancy services

5

efficiency and effectiveness of verification strategies. The
established dilemma is:

“I want to run ONLY “good” verification
cycles!”

So, when are verification cycles “good cycles”? Only if
“Verification Progress” has been made. By that we mean
that it has either found a new bug, or it has measurably
increased the testing space i.e. demonstrated correctness.
The former is easy to track (we can count bugs), but the
latter is harder because we don’t know precisely how
many bugs are present. We wish we did!

At the end of the day, the cost of the Engineering Platform
needs to be accounted for as part of the product ROI
calculation.

2.2.1 Capacity Planning and Demand
Forecasting

If the Engineering Platform is a shared resource, shared
between multiple product development teams, then the
available capacity has to be managed unless the capacity
far exceeds the demand, which is not typically the case.
To avoid a situation when demand outstrips capacity,
governance and decision making are required to prioritize
and schedule capacity fairly and with optimal overall
benefit to the business. Good forecasting practices are
required to plan for capacity scaling in a timely manner.
Actually, good practices and also good behaviors are
required. If teams are aware that they are in competition
with other teams for shared resources, it’s tempting to
inflate the ‘demand’ a little, knowing that there is a
negotiation process where a lower ‘allocation’ may be
given. How do you encourage a more altruistic attitude to
demand forecasting? Forecasting needs to be as data-
driven as possible, and less opinion or judgement based.
This depends on having good historical data (the
‘utilization’).

Capacity management is driven by
‘Demand, ‘Capacity’, ‘Allocation’ and

‘Utilization’.
As previously mentioned, constrained-random
verification techniques have proven to be very effective at
flushing out obscure bugs. We stated earlier that
verification is a “resource-limited quest” and a
consequence of this is the likelihood of consuming a lot
of expensive compute resource for marginal gains.
Verification teams want to be ‘smarter’ about verification,
but there may be some considerable effectiveness
challenges, leading to the consumption of many ‘dumb’
cycles (e.g. repeated cycles where there is no variance in

15 Clearly you don’t want expensive ‘paid-for’ capacity sitting idle and
for every compute slot to be doing useful work for as much time as
possible.

the stimulus, adding little or no value to the testing).
However, in the course of a product development, there
may be times where extra compute capacity becomes
available for some reason, and it makes sense to consume
those additional ‘available’ cycles for the sake of keeping
the platform running at close to maximum throughput15,
and opportunistically increasing verification assurance
levels. When this happens, it is important to be able to
recognize this opportunistic consumption because the
utilization data will subsequently be used as the basis for
future demand forecasting. Note that if you are using
cloud-based compute, the model is more likely to be
PAYG so there may be less opportunity to consume
available capacities, or the decision will be more budget
driven.

Figure 4: Platform Consumption (fake data)

Some businesses operate the Engineering Platform as a
charge-back service. There is a cost model associated with
the platform and project teams are cross-charged based on
allocation and/or utilization. This charge-back model can
lead to better demand forecasting and utilization
behaviors and helps with product development ROI
transparency. The cost model for the platform can be
simple or sophisticated, it doesn’t matter, but it does need
to account for all aspects of the service operation
including hardware infrastructures, licenses, staffing,
energy, plant, maintenance, depreciation, insurance and
business continuity costs. This model also lends itself to
an easier transition to cloud services where cost models
are the norm and allows teams to treat any on-prem
platforms and cloud services in the same way. At the end
of the day, development teams should not care if the
platform is being provisioned internally/on-prem, or
externally with cloud services. They should only care
about the QoS, availability, and the cost.

The Cost of Bugs

Copyright © 2020 Acuerdo Consulting and Valytic Consulting. All rights reserved.

ACUERDO
acuerdo

Joe Convey
+44 7850 007341
r1raider@gmail.com

consultancy services

6

Capacity management is a highly data-driven enterprise,
requiring good data engineering platforms, good data
curation practices, good data visualization, and good data
science practices to gain insights from the data and drive
improvements in areas such as prediction-based
forecasting.

Ultimately, Capacity Management is all
about data.

2.2.2 Operational Analytics (Telemetry)
Extensive operational analytics are needed in order to
operate a resilient and performant platform service
delivering the appropriate QoS. These analytics will
monitor system performance and capacities, track
operational metrics over time, raise alerts when
interventions are required, and may exploit machine
learning prediction algorithms to alert to pending failures
so that mitigations can be deployed ahead of a critical
failure point. Such systems may become ‘self-healing’ as
interventions can be applied before end-users notice any
impact on QoS.

Designing, deploying and operating widescale platform
telemetry systems is a major and important part service
operation of the platforms requiring many software and
analytical systems.

2.2.3 Scalability/Flex
Scaling the platform to meet current and forecasted
demand is a significant challenge for most businesses.
Historically there has been a continuous growth in
demand for capacity driven by the demand for higher
volumes of testing driven by ever increasing product
complexity. This demand growth has not always been
linear, and clearly un-checked growth may lead to
products with negative ROI, so some limits have to be set
on platform consumption and developers have to find
smarter and more effective ways to wring out the bugs and
deliver the required product quality. Note also that
platform expansions are expensive and take time to
execute. They need to account for lead times on physical
equipment, environmental/facility constraints, cost
constraints, and human resource constraints. Unplanned
capacity expansions typically cannot be met overnight
and robust demand forecasting is key to ensuring that the
capacities are available when they are needed.

For an on-prem platform, the ability to
‘flex’ capacity is a logistical and costly

challenge.

16 https://www.racksolutions.com/news/data-center-trends/what-is-a-
colocation-data-center/

Note there is trend to using so called co-located premises
(or Colo)16 for computing, providing a faster route,
specialist facilities, higher security and rapid
implementation of new capacity.

For businesses that share the platform between many
projects, overlapping and competing project schedules
can lead to some peaks in the aggregated demand forecast.
Capacity planners need to smooth out these peaks as far
as possible, in order to make the total ‘demand’ fit within
the available capacity. However, projects will still need to
be able to meet some peak demands, especially as they
work towards key milestones, or to account for
unexpected events such as urgent rework. Some ability to
‘flex’ overall platform capacity, either up or down, is
desirable. Cloud services are well suited to this, as they
have vast resources available on-demand, and can spin up
additional capacity almost instantaneously, for the right
price point of course. Some combination of on-prem
capacity to meet predicted demand, and flexible cloud
capacity to manage peaks and troughs seems like a good
compromise. The key enabler to such an on-prem+cloud
strategy, however, is portable workflows and portable
data. Workflow encapsulation enables activities such as
simulation to be dynamically allocated to either on-prem
or cloud with the underlying details of the platform
environment abstracted from the user. Portable workloads
are not only a challenge from the user viewpoint, but also
for the EDA companies who have to have an established
commercial model for cloud and relevant tooling to allow
seamless job switching.

2.2.4 Efficiency
Platform operators must continuously strive to maximize
the efficiency of the platform. This means looking at all
aspects of the platform from the raw performance of the
compute resources, to network, WAN and storage
performance, efficiency of work scheduling algorithms
(load balancing), and also the performance of the software
applications that are consuming the compute resources.
The delivered capability of the Engineering Platform is
dependent on all of these things and not only the raw slot
count capacity of the estate. For example, server and
storage hardware refreshes are normally cyclic and
hardware suppliers are constantly improving the raw
performance and capability of their products in line with
memory and processer technology advances, so
refreshing old slots for new slots normally brings with it
a welcome platform performance/capacity uplift.
Similarly, EDA tool suppliers are constantly refining and
optimizing their products, so that they can perform more
work in less compute time and the tools become more
efficient. Additionally, product development teams may
refine verification methodologies to do more effective

The Cost of Bugs

Copyright © 2020 Acuerdo Consulting and Valytic Consulting. All rights reserved.

ACUERDO
acuerdo

Joe Convey
+44 7850 007341
r1raider@gmail.com

consultancy services

7

work, i.e. more “good cycles”, are achieved with less
platform/EDA tool consumption.

Platform efficiency improvements, EDA tool
improvements and methodology effectiveness
improvements need to be able to keep up with escalating
product complexity trends in order to avoid runaway
platform demand and costs.

2.3 EDA Tools Investment

2.3.1 Cost of tools for finding Bugs
Most companies use a variety of technologies to search
for bugs in designs. It is expensive to deploy some of these
technologies, so there are practicalities and compromises
that have to be explored versus cost before decisions are
made.

EDA tool licensing costs are a VERY
significant part of the overall Engineering

Platform cost.
Businesses need to decide if they are going to align with
a preferred vendor and drive standardization within the
engineering teams, or, make multiple-vendor options
available so that teams can choose according to their
preferences. Although the latter option sounds like the
most expensive, it fosters healthy competition between
vendors both in terms of cost and capability. Engineering
teams need to regularly benchmark tools in terms of
performance and capability to ensure that the EDA
industry continually improves its’ offerings so that
product teams can drive down development costs. Some
of this burden of benchmarking can be achieved by
sharing representative designs and payloads to the
respective vendors, under appropriate IP access
agreements of course.

There is innovation happening in how some vendors
deliver these technologies; – rather than purchasing
certain tools, you can pay for what you need, when you
need it, with so called pay-as-you-go (PAYG). By
offering an alternative, this potentially brings CAPEX
intensive technologies such as FPGA and emulation into
the reach of more design teams. It is a developing area,
with new players entering the fray alongside traditional
EDA Vendors, so is worth investigating fully before
procurement decisions are made.

Figure 5: Verification Methodologies Compared

As a design progresses towards final release, fewer and
fewer changes need to be made. As the code becomes
more stable it can be run on faster technologies to reduce
overall simulation times. FPGA simulations run much
faster than simulators running on cluster but are more
difficult and time-consuming to set up. There is a trade-
off; engineering teams can accept longer deployment
times to reap the benefit of greater performance to test for
bugs more widely and earlier in the design process, in both
hardware and software.

2.3.2 Supplier Relationships and what to
look for in EDA vendors

Ecosystem support
Many companies using EDA tools operate multi-vendor
workflows, and this is certainly true for verification and
debug. It is not unusual to find a simulator from one
vendor being used alongside a debug solution from
another, for example. In most cases there are standards
agreed among vendors that govern the formats that can be
used to transfer data from one tool to another, but this is
not universally true.

Partnership vs transactional sales
EDA tools are complex and difficult to develop and
maintain. There is constant pressure to optimize tools for
new design challenges that come along and this translates
into fierce competition among vendors. This means tools
are expensive as vendors naturally try to pass R&D costs
on to customers and remain profitable.

So how do you improve your leverage
when it comes to negotiations?

Due to the competitive nature of the market for EDA
tools, vendors often look for opportunities to get early
adoption of new tools and features and want to promote
this to the rest of the semiconductor world. That is the
time to seek evaluations, especially for leading edge tools
you might adopt. See if there is some way to work with

The Cost of Bugs

Copyright © 2020 Acuerdo Consulting and Valytic Consulting. All rights reserved.

ACUERDO
acuerdo

Joe Convey
+44 7850 007341
r1raider@gmail.com

consultancy services

8

the vendor in a more partnership-like way, rather than just
being another sales cycle. It might help with the
commercial outcome you get, as well as making for a
better technical relationship as you seek to deploy the
tools into production.

2.3.3 New trends

Machine learning
Machine learning applied to EDA tools became marketing
reality in PR in early 2018 and has progressed from then.
When it comes to better targeting for large simulation
jobs, it certainly has a role alongside in-house efforts to
use “big data” to do the same. Progress can be seen in
functional simulation and physical simulation areas,
where improved use of data can help provide a faster route
to results, or more accurate outcomes. Extensive
evaluation of ML capabilities is essential to assess real
gains in relation to your specific verification workloads.
Some ML capabilities may need a degree of
“personalization”, which the vendor will provide to in the
form of payable services.

Simulation in Cloud and Cloud SaaS
As you would expect, the big three EDA vendors all claim
to offer cloud capabilities, but they are not alone as
various disruptors vie for a position in this growing sector.

Why should you care if you already have on-prem
capacity? There are various use cases that might lend
themselves to a cloud-based approach, be it using your
own licenses, or a specific cloud SaaS offering;

• BCM17 – most self-managed on-prem compute
facilities don’t necessarily offer the most robust
compute platforms versus what a service running on
one of the big 3 cloud vendors can achieve.

• Spikey workloads – capacity management is hard, as
already discussed, so a viable bank of last resort
option is to transfer spike demand to cloud options.

• Throughput – cloud offers ubiquitous compute, so
an on-prem capacity crunch can have undesirable
effects on throughput of jobs. This can cause delays
in product release plans. Cloud can get around these
problems. In the case of testbenches that run slowly,
just throw more licenses at it and the run the testbench
in the cloud, making up for the slow individual
performance shortfall.

• Performance – EDA companies are starting to offer
significant increases in turnaround time as they can
throw (in theory) infinite numbers of licenses at
simulation jobs. However, this does not guarantee
you are running good cycles, so the question of better
targeting remains a significant issue.

17 Business Continuity Management

• Targeting – big EDA have tried to improve bugs
found by introducing intelligence into the cloud.
Machine Learning has been shown to improve
targeting in the cloud, therefore offers both
performance and quality gains. Quite often these
engagements require a somewhat bespoke services
agreement in addition to the license and cloud costs.

• Specialist Disruptors – New vendors now exist that
offer simulation specific cloud services.

Cloud verification strategies – Make vs Buy…
If you decide to leap into cloud-based compute, especially
for intensive processes like verification, there are some
basic decisions to take regarding which route you want to
follow. From the engineering side the overwhelming view
will be that…

“…it can’t be that difficult to put sim jobs
in the cloud, please just get on with it!”.18
So, there may be considerable pressure to adopt a home-
grown approach. The alternative is to let someone else do
most of the worrying and buy a service from a third-party
provider.

Gotchas with “make” your own cloud-based
simulation system
If you intend to use your own EDA licenses, cloud-based
implementations require significant development of
existing orchestration capabilities in order to offer users
seamless transition of jobs from on-prem to cloud.

Your current on-prem workflow probably offers easy
transitions from simulator to interactive debug tools,
without delays or complications. Decisions have to made
about how interactive simulation and debug licenses
could be run in the cloud in a performant way.

Cloud cycles are not necessarily cheaper than on-prem
(often the reverse), so one major concern is to ensure that
engineers’ access to cloud is managed. This involves
throttling applications, zombie-job deletion etc. in order
to prevent massive bills at the end of the month from your
cloud supplier.

As mentioned earlier, one of the key ingredients needed
to make sure you are running good-cycles is excellent
analytics, especially around cost. Cloud-based models
should make this easier, but this measurement capability
still needs to be developed if you intend to “make” your
own cloud capability.

License contract provisions are another area to thoroughly
check before embarking on a grow-your-own strategy.
Standard EDA contracts will not usually offer the option
to use your licenses in the cloud. It’s more likely to be

18 Read in a strong Glaswegian accent.

The Cost of Bugs

Copyright © 2020 Acuerdo Consulting and Valytic Consulting. All rights reserved.

ACUERDO
acuerdo

Joe Convey
+44 7850 007341
r1raider@gmail.com

consultancy services

9

specifically prohibited. Getting permission will involve
some contract re-negotiation to get the rights and expect
the cost to go up.

Storage costs in the cloud can appear small for small
amounts of data, but with complex simulations, vast
amounts of data can soon grow costs. Careful analysis
needs to be applied to your specific workflows to make
sure the ROI of cloud vs on-prem works.

The “buy” complete integrated service option
Cloud based “Platforms” offering a complete service are
now available, which can avoid many of the issues
associated with the “make” option discussed above. They
claim to provide all aspects of the workflow in one service
with web-based verification manager, coverage reporting
and debug tools, along with connection into existing
infrastructure (e.g. storage). Effectively offering a
complete SaaS-like solution, or “Verification-as-a-
Service”. Some combine these technical capabilities with
a new PAYG commercial model which principally avoids
new capital expenditure. This is very attractive when it
comes to accurate cost and ROI analysis. Big EDA are
starting to make similar offerings.

Although attractive, the cost per cycle, or minute
(depending on the commercial model) needs to be
carefully compared to on-site controlled cloud initiatives.
These cost models are necessarily complex as they have
to reduce all costs of on-prem, make-cloud options, or
SaaS offerings to a common denominator, such as cost-
per-cycle. Cloud often appears very expensive but beware
of false comparisons which do not take all your existing
infrastructure costs (including IT staff) into consideration.
Not every organization has the cost modelling capabilities
to do this in-house, so may turn to others for advice.

2.3.4 How do you know you are getting
best-in-class?

Engineers presented with complex technical problems and
tight deadlines can be trusted to do a good deal of due
diligence, looking at leading-edge tools and capabilities
from big EDA and Tier 2 vendors that will improve
Quality of Results (QoR), accuracy or performance. Often
the Tier 2 vendors are the ones tackling some of the really
nasty challenges, using VC money. Once they have
cracked it and a couple of notable customers start using
the tools on real projects, big EDA usually end up buying
them. Be prepared to work with the small guys in a
collaborative way to help get the tools they are developing
to a stage you can use them. Expect the big guys to
provide longer term financial viability; think BCM by
buying them.

Let’s talk about evaluations and the role they play in this
process. First of all, let’s assume you have a clear EDA
and IT strategy that details what you are trying to deliver
to your engineering team. It’s a big assumption, as many

do not have a clear handle on strategy, so it worth taking
the time to develop one. One of the key questions is;

What is the engineering capability end-
state you are gunning for?

If that is known, then it is much easier to define your
strategy and then decide what evaluations are in-scope
and need to be carried out.

At this point, define clear evaluation criteria. Work with
EDA but be robust. Work with them to define exactly how
they will get you to your desired end-state. Set timescales
and never forget to define the commercial end-state so
there are no nasty surprises.

In as far as your organizational structure allows you to,
consider setting up a governance structure to overlook the
evaluation process. It should have representation from all
interested parties including engineering, buyers, senior
management budget holders, finance, facilities and
engineering IT. Most new tool introductions will require
agreement across all these areas, especially if you are
talking about extra hardware like emulation and FPGA,
requiring space and facilities.

Make sure you have an approach to evaluations that
avoids anarchy by adding some structure (engineers try
and buy at will, costing a fortune), but that doesn’t stifle
innovation. Recognize engineering, understand their
requirements and get them involved in the technical and
commercial process.

2.4 Methodology Investment
Since we are focused upon Bugs as the theme for this
discussion, we shall limit our analysis to verification.
Also, as mentioned previously, we assert that verification
is the dominant consumer of platform resources for
complex hardware IP development, the other consumers
being Verilog design and implementation workflows.

Given the aforementioned scale of the verification
consumption, there is a lot of opportunity to make radical
cost savings through methodology effectiveness
improvements. If platform availability is infinite and costs
are irrelevant, we might not worry about effectiveness too
much and instead focus our efforts on managing the
execution of the verification payloads to maximize the
throughput, regardless of how effective the payloads are
at finding the bugs. We may be wasting valuable compute
resources by: -

• Repetitively re-running the same tests so that there is
no net gain in verification progress.

• Not smartly detecting and terminating runaway jobs
quickly, possibly running huge regressions where the
results are invalid and will be thrown away.

• Running verification payloads too early, when the
RTL model is simply not stable enough. If we are
generating more test failures than we can humanly

The Cost of Bugs

Copyright © 2020 Acuerdo Consulting and Valytic Consulting. All rights reserved.

ACUERDO
acuerdo

Joe Convey
+44 7850 007341
r1raider@gmail.com

consultancy services

10

debug, then debug time is the limiting factor, not
compute time.

• Not running our jobs at the most optimized
performance because we forgot to enable the correct
optimization switches, or we have unnecessarily
encumbered the runs with poor testbench design or
poor choice of tools.

Of course, in reality the platform is not free, and
availability is constrained, so there is a constant need to
wring the best possible ROI out of those consumed
resources and deliver the product to the highest quality
achievable in the shortest time.

Scarcity of platform resources/capacity
can help to drive innovation for

verification methodology developers.
Which are the smartest methods? How do I reduce wasted
testing cycles? Can I measure effectiveness to facilitate
continuous improvement? Verification becomes a very
analytical discipline. It’s all about having good data and
good strategies to visualize and exploit that data in order
to drive improvements. This is a rich opportunity space
for data science where machine learning methods can be
applied to large verification datasets and real
effectiveness gains can be achieved. “The Origin of
Bugs”19 discusses how data and analytics can help to
understand and improve bug search methodologies.

3 The Cost of not finding
Bugs

In the introduction we already talked about some of the
more public examples of the impact cost of critical bugs.

When bugs are discovered post release or
post deployment, the total impact cost can
avalanche as the impact cascades down
the supply chain to the final end user.

Rework costs for the IP developer might be bad enough,
but when that IP is deployed at scale into critical systems,
or millions/billions of consumer products, the potential
rework costs could be astronomical. Additionally, those
rework costs are likely to divert IP developer resources,
human and infrastructure, and impact the delivery of the
business roadmaps. In turn, this will impact revenues
across the business, not only for the product being
reworked. To build a picture of the total impact all of
these areas must be considered and measured where
possible.

19 https://www.valytic.co.uk/whitepapers

Further, to build a full cost impact perspective, the cost
modelling needs to be applied to the multiple contexts of
the

1. IP Product Developers
2. IP Product Consumers (e.g. SoC Developers)
3. Consumer Product Developers (e.g.

device/equipment developers)
4. Third party software developers (Applications, OSs,

Tools, ecosystems)
5. End Users (the device consumers)

The IP Developer is typically not able to assess this
complete picture, but you get a sense of how a simple bug
(which might be root caused to something as simple as a
missing term in a line of Verilog, or a typo that has gone
unnoticed) can be responsible for potentially vast and far
reaching cost impacts that get passed down the
development chain.

In general, the cost impacts fall into the three major
categories of: -

• People costs – the engineering and management
time consumed.

• Platform costs – the cost of the platform resources
consumed (includes all elements of the platform
including EDA tools).

• Sales costs – the cost impact to sales and revenues
for the business.

It’s worth developing this total cost-impact model in more
detail.

Figure 6: Example Cost Impact Model (fake data)

3.1 Analysis and Debug
If a bug has escaped the product development verification
effort, it must have been found post release by some
means or other. It may have been found internally through
ongoing verification efforts, coincidentally by a related
product team, by the customer during their own product
development, or in the case of something like Spectre and
Meltdown as cited earlier, by independent software

The Cost of Bugs

Copyright © 2020 Acuerdo Consulting and Valytic Consulting. All rights reserved.

ACUERDO
acuerdo

Joe Convey
+44 7850 007341
r1raider@gmail.com

consultancy services

11

developers or security penetration testing teams. Either
way, the full scope and impact of the bug has to be fully
analyzed and documented by the IP developer. This can
entail considerable time and effort depending on the
complexity of the bug. The mechanisms of the bug and
the implications of the bug have to be fully understood
and an appropriate category assigned to the bug. The
severity of the bug will dictate what happens next.

As a follow on to the analysis phase, the IP developer
should conduct a formal or informal ‘Root Cause
Analysis’ (RCA) process. This process needs to identify
the root causes for the bug being in the design and also the
root causes for the bug being evaded by verification
efforts. This analysis may lead to a number of corrective
actions e.g. extensions to the verification environment to
address the testing shortfall, a review of other related
areas that might be affected by similar sibling issues, or
an analysis of related IP products that may also be
impacted by the bug.

3.2 Product Updates
If a hardware mitigation is the only viable solution, this
will trigger a product update with all of the associated
rework that this generates, and re-delivery of the product.
Note that a product update may incur substantial rework
costs. Even a simple RTL change might affect nearly all
of the product deliverables including documentation and
reference workflows.

The hardware mitigation may also incur a range of costs
for the customer depending on where they are in their own
development cycle.

3.3 Communication and Management
How the IP developers manage the communications
around bugs is as important as how they fix the bugs.
Communications need to be timely and accurate.
Customers may wish for a ‘heads-up’ whenever an
impactful bug is being triaged and diagnosed, especially
if an early intercept could avoid incurring large rework
costs. However, these communications need to be
carefully managed, as falsely raising the alarm too early
can be just as costly. IP developers need to react quickly
and be able to divert the appropriate engineering resources
onto the analysis, impact assessment and documentation
phase to ensure that accurate and complete information is
available at the earliest opportunity. This often entails a
diversion of resources with knock-on impacts to other
critical work.

3.4 Software Mitigations
Once understood, the next priority is to develop and
deploy any possible mitigations, especially if the IP is
already deployed into customer products and is in the
field. In the best case, a simple software mitigation can be

deployed that will avoid the bug but will not be
detrimental to the performance of the product. Clearly
there is a burden of verification for any software
mitigation that is released into the ecosystem. If the
software mitigation is deemed to be impactful, it may be
considered as an interim patch, until a hardware
mitigation can be made available. Software mitigations
can be costly if the impact is far reaching into the software
ecosystem.

3.5 Workflow Improvement Costs
The RCA process should also attempt to identify practical
long-term improvement measures as part of a philosophy
of continuous improvement. These preventative measures
should be implemented in a way that codifies them into
engineering workflows in a way that ensures the same
error cannot occur again for the affected product or any
other product. This might be as small as adding an
incremental improvement to an existing workflow, or it
could entail the development and introduction of a new
methodology or workflow with a much higher but
necessary cost impact.

3.6 Opportunity Costs
As discussed above, late bugs, discovered after product
release, can be very impactful in terms of resources,
human and non-human. Oftentimes you need to call upon
some of your most talented people to drop what they are
doing and prioritize the bug analysis and subsequent
rework. And those talented people may have moved onto
the next product development, so there is an impact to
these other important projects also. Opportunities to
deliver new products against the business’s roadmaps can
be impacted with the knock-on impact to staffing, or
engineering platform availability. That in turn may lead to
a delay in revenues as those roadmap products come to
market later, or even loss of business as market windows
are missed due to unforeseen development delays. It’s
important to keep an eye on these knock-on effects when
finite resources are drained and diverted onto unplanned
and critical rework due to bugs.

There are also opportunity costs at a more personal level
for the critical staff members impacted by the bugs.
Aspiring developers do not want to be ‘stuck’ working on
legacy products and want to move onto the next exciting
project where they can innovate, develop and implement
exciting fresh product ideas. Bug rework may not be
‘exciting’ from a personal development point of view, in
fact it might be ‘frustrating’ and demotivating work, even
though it is critical work. Glory can be found from
leadership, technical or non-technical, in times of crisis
management, and the problem solving required may be
extremely challenging and therefore potentially
rewarding. But at the same time, it is human nature to
want to move onto the next great thing, a new product
development, and leave historical projects behind. Of

The Cost of Bugs

Copyright © 2020 Acuerdo Consulting and Valytic Consulting. All rights reserved.

ACUERDO
acuerdo

Joe Convey
+44 7850 007341
r1raider@gmail.com

consultancy services

12

course, the business may choose to staff up product
maintenance and rework in a different way, protecting the
new product development teams from distractions, and
interruptions as far as possible. However, even with the
best documented and cleanest codebase, those closest to
the product development have the best understanding of
their code, may have undocumented insights into the
workings of it, and can solve the problems in the shortest
time. The cost here is harder to quantify in currency terms,
but staff engagement is an important aspect and we know
that staff hiring, development and retention costs can be
high and the impact of losing key staff affects the
business’s ability to innovate and generate revenue.

3.7 Reputational Costs
Vulnerabilities such as Spectre, Meltdown, and the
infamous Pentium FDIV bug were headline news in the
semiconductor world. They did make it into mainstream
media and hit public consciousness to a level. Silicon
design happens so far up the design chain that it is usually
obscured from the public eye by powerful OEM
marketing machines. Within the semiconductor world this
was big news, however, and major IP suppliers had to
move very quickly to provide mitigation and excellent
communication about workarounds and mitigation to their
customers help them avoid serious consequences in their
product designs. By providing this level of service, the IP
vendors were able to maintain vital levels of trust among
their licensees. Part of that messaging will also have been
about what future actions they were going to be making to
avoid the same thing happening again, in the certain
knowledge that the customer base would not be so tolerant
next time around. The importance of maintaining that
level of trust also extends to the investment community,
who want to know that their stock holdings are not subject
to negative impacts driven by major post-release bug
discovery. Some vendor Annual Reports go to some
lengths to explain the issues, the levels of risk and
investment attached to them and plans to mitigate the
impact on sales and financial provisions for recompense
to unhappy customers (source Intel Annual Report
201820).

4 Conclusion
So, what is the real question here? How can you start
using this information to challenge your existing
understanding and ensure you are getting the best ROI
within acceptable risk levels?

As we said at the start, it boils down to your understanding
of the total cost of bugs expressed as the costs burned in
finding bugs (probably the most significant part of your

20
https://s21.q4cdn.com/600692695/files/doc_financials/2018/Annual/Int
el-2018-Annual-Report_INTC.pdf

total IP Product development cost) versus the cost of not
finding bugs, i.e. what is the total impact cost when bugs
are missed?

Figure 7: Which Scenario are you currently in? (fake data)

So, the question is, which of the above 2 scenarios are you
in? Are you cost-to-find low, but high risk/impact
regretting not having spent enough on verification, or are
you cost-to-find high with impact risk/cost low wondering
if you are spending too much?

Do you have enough data to be able to reason about this
and decide which scenario applies to your operations? If
not, then what actions should you be taking to find out
where you are and what action to take in each situation?

If your analysis shows that you are in scenario A, it looks
like you need to address product quality urgently. You’re
not really investing sufficiently in IP Product Verification
and the impact costs are significantly reducing your
products’ ROI. Scenario B certainly feels more
comfortable, but you might have nagging doubts about the
efficiency of your operations.

It has long been said that verification costs overshadow
design costs, and this does not look set to change any time
soon. However, looking at your verification capability in
terms of cost vs impact throws important light onto the
risks you are running.

There is no verification “silver bullet” and there never will
be. However, engineering teams can exploit the power of
data to understand these costs, risks and impacts and seek
to make verification as efficient and effective as possible,
always striving to run “good” cycles and eliminate
wastage and inefficiencies wherever possible. An
analytical approach to the problem can enlighten teams to
make good choices about the best methodologies and best
tools and how to keep platform costs to a minimum. Data
Science is coming to the rescue!

